java 中ThreadPoolExecutor原理分析
java 中ThreadPoolExecutor原理分析
線程池簡介
Java線程池是開發(fā)中常用的工具,當我們有異步、并行的任務要處理時,經(jīng)常會用到線程池,或者在實現(xiàn)一個服務器時,也需要使用線程池來接收連接處理請求。
線程池使用
JDK中提供的線程池實現(xiàn)位于java.util.concurrent.ThreadPoolExecutor。在使用時,通常使用ExecutorService接口,它提供了submit,invokeAll,shutdown等通用的方法。
在線程池配置方面,Executors類中提供了一些靜態(tài)方法能夠提供一些常用場景的線程池,如newFixedThreadPool,newCachedThreadPool,newSingleThreadExecutor等,這些方法最終都是調(diào)用到了ThreadPoolExecutor的構(gòu)造函數(shù)。
ThreadPoolExecutor的包含所有參數(shù)的構(gòu)造函數(shù)是
/**
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @param threadFactory the factory to use when the executor
* creates a new thread
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
- corePoolSize設置線程池的核心線程數(shù),當添加新任務時,如果線程池中的線程數(shù)小于corePoolSize,則不管當前是否有線程閑置,都會創(chuàng)建一個新的線程來執(zhí)行任務。
- maximunPoolSize是線程池中允許的最大的線程數(shù)
- workQueue用于存放排隊的任務
- keepAliveTime是大于corePoolSize的線程閑置的超時時間
- handler用于在任務逸出、線程池關閉時的任務處理 ,線程池的線程增長策略為,當前線程數(shù)小于corePoolSize時,新增線程,當線程數(shù)=corePoolSize且corePoolSize時,只有在workQueue不能存放新的任務時創(chuàng)建新線程,超出的線程在閑置keepAliveTime后銷毀。
實現(xiàn)(基于JDK1.8)
ThreadPoolExecutor中保存的狀態(tài)有
當前線程池狀態(tài), 包括RUNNING,SHUTDOWN,STOP,TIDYING,TERMINATED。
當前有效的運行線程的數(shù)量。
將這兩個狀態(tài)放到一個int變量中,前三位作為線程池狀態(tài),后29位作為線程數(shù)量。
例如0b11100000000000000000000000000001, 表示RUNNING, 一個線程。
通過HashSet來存儲工作者集合,訪問該HashSet前必須先獲取保護狀態(tài)的mainLock:ReentrantLock
submit、execute
execute的執(zhí)行方式為,首先檢查當前worker數(shù)量,如果小于corePoolSize,則嘗試add一個core Worker。線程池在維護線程數(shù)量以及狀態(tài)檢查上做了大量檢測。
public void execute(Runnable command) {
int c = ctl.get();
// 如果當期數(shù)量小于corePoolSize
if (workerCountOf(c) < corePoolSize) {
// 嘗試增加worker
if (addWorker(command, true))
return;
c = ctl.get();
}
// 如果線程池正在運行并且成功添加到工作隊列中
if (isRunning(c) && workQueue.offer(command)) {
// 再次檢查狀態(tài),如果已經(jīng)關閉則執(zhí)行拒絕處理
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
// 如果工作線程都down了
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
addWorker方法實現(xiàn)
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
// 如果添加成功,則啟動該線程,執(zhí)行Worker的run方法,Worker的run方法執(zhí)行外部的runWorker(Worker)
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
Worker類繼承了AbstractQueuedSynchronizer獲得了同步等待這樣的功能。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state.
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
runWorker(Worker)是Worker的輪詢執(zhí)行邏輯,不斷地從工作隊列中獲取任務并執(zhí)行它們。Worker每次執(zhí)行任務前需要進行l(wèi)ock,防止在執(zhí)行任務時被interrupt。
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
ThreadPoolExecutor的submit方法中將Callable包裝成FutureTask后交給execute方法。
FutureTask
FutureTask繼承于Runnable和Future,F(xiàn)utureTask定義的幾個狀態(tài)為
NEW, 尚未執(zhí)行
COMPLETING, 正在執(zhí)行
NORMAL, 正常執(zhí)行完成得到結(jié)果
EXCEPTIONAL, 執(zhí)行拋出異常
CANCELLED, 執(zhí)行被取消
INTERRUPTING,執(zhí)行正在被中斷
INTERRUPTED, 已經(jīng)中斷。
其中關鍵的get方法
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
先獲取當前狀態(tài),如果還未執(zhí)行完成并且正常,則進入等待結(jié)果流程。在awaitDone不斷循環(huán)獲取當前狀態(tài),如果沒有結(jié)果,則將自己通過CAS的方式添加到等待鏈表的頭部,如果設置了超時,則LockSupport.parkNanos到指定的時間。
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
}
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
FutureTask的run方法是執(zhí)行任務并設置結(jié)果的位置,首先判斷當前狀態(tài)是否為NEW并且將當前線程設置為執(zhí)行線程,然后調(diào)用Callable的call獲取結(jié)果后設置結(jié)果修改FutureTask狀態(tài)。
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
感謝閱讀,希望能幫助到大家,謝謝大家對本站的支持!
相關文章
SpringBoot項目鑒權(quán)的4種方式小結(jié)
本文主要介紹了SpringBoot項目鑒權(quán)的4種方式小結(jié),包括傳統(tǒng)AOP、攔截器、參數(shù)解析器和過濾器,文中通過示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2021-12-12
SpringCloud Gateway網(wǎng)關功能介紹與使用
SpringCloud Gateway 是 Spring Cloud 的一個全新項目,它旨在為微服務架構(gòu)提供一種簡單有效的統(tǒng)一的 API 路由管理方式。這篇文章主要介紹了SpringCloud Gateway網(wǎng)關作用,需要的朋友可以參考下2022-12-12
IDEA巧用Postfix Completion讓碼速起飛(小技巧)
這篇文章主要介紹了IDEA巧用Postfix Completion讓碼速起飛,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-08-08
SpringBoot+Vue+Element-ui實現(xiàn)前后端分離
使用前后端分離的方式,可以減少代碼耦合,本文主要介紹了SpringBoot+Vue+Element-ui實現(xiàn)前后端分離,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2023-06-06

