JavaScript數(shù)據(jù)結(jié)構(gòu)之二叉查找樹的定義與表示方法
本文實例講述了JavaScript數(shù)據(jù)結(jié)構(gòu)之二叉查找樹的定義與表示方法。分享給大家供大家參考,具體如下:
樹是一種非線性的數(shù)據(jù)結(jié)構(gòu),以分層的方式存儲數(shù)據(jù)。樹被用來存儲具有層級關(guān)系的數(shù)據(jù),比如文件系統(tǒng)中的文件;樹還被用來存儲有序列表。這里將研究一種特殊的樹:二叉樹。選擇樹而不是那些基本的數(shù)據(jù)結(jié)構(gòu),是因為在二叉樹上進行查找非??欤ǘ阪湵砩喜檎覄t不是這樣),為二叉樹添加或刪除元素也非??欤ǘ鴮?shù)組執(zhí)行添加或刪除操作則不是這樣)。
樹是n個結(jié)點的有限集。最上面的為根,下面為根的子樹。樹的節(jié)點包含一個數(shù)據(jù)元素及若干指向其子樹的分支。結(jié)點擁有的子樹稱為結(jié)點的度。度為0的結(jié)點稱為葉子或終端結(jié)點。度不為0的結(jié)點稱為非終端結(jié)點或分支結(jié)點。樹的度是樹內(nèi)各結(jié)點的度的最大值。結(jié)點的層次從根開始定義,根為第0層。樹中結(jié)點的最大層次稱為樹的深度或高度。
二叉樹是一種特殊的樹,它的子節(jié)點個數(shù)不超過兩個。二叉樹具有一些特殊的計算性質(zhì),使得在它們之上的一些操作異常高效。通過將子節(jié)點的個數(shù)限定為 2,可以寫出高效的程序在樹中插入、查找和刪除數(shù)據(jù)。
在使用 JavaScript 構(gòu)建二叉樹之前,需要給我們關(guān)于樹的詞典里再加兩個新名詞。一個父節(jié)點的兩個子節(jié)點分別稱為左節(jié)點和右節(jié)點。在一些二叉樹的實現(xiàn)中,左節(jié)點包含一組特定的值,右節(jié)點包含另一組特定的值。二叉查找樹是一種特殊的二叉樹,相對較小的值保存在左節(jié)點中,較大的值保存在右節(jié)點中。這一特性使得查找的效率很高,對于數(shù)值型和非數(shù)值型的數(shù)據(jù),比如單詞和字符串,都是如此。
二叉查找樹由節(jié)點組成,所以我們要定義一個Node對象,代碼如下:
function Node(data,left,right){//結(jié)點類
this.data=data;
this.left=left;
this.right=right;
this.show=show;
}
function show(){//顯示節(jié)點中數(shù)據(jù)
return this.data;
}
其中l(wèi)eft和right分別用來指向左右子結(jié)點。
接下來需要創(chuàng)建二叉查找樹的類,代碼如下:
function BST(){//樹類
this.root=null;
this.insert=insert;
this.inOrder=inOrder;
this.preOrder=preOrder;
this.postOrder=postOrder;
}
接下來是插入節(jié)點的代碼。遍歷小的插左邊,大的插右邊。代碼如下:
function insert(data){//插入操作
var n=new Node(data,null,null);
if(this.root==null){//第一個元素
this.root=n;
}else{
var current=this.root;//永遠指向根節(jié)點
var parent;
while(true){//一直運行直到找到左結(jié)點或右結(jié)點為止
parent=current;
if(data<current.data){
current=current.left;
if(current==null){//如果沒有左節(jié)點
parent.left=n;
break;
}
}else{
current=current.right;
if(current==null){//如果沒有右節(jié)點
parent.right=n;
break;
}//如果有右節(jié)點,則跳到while重新執(zhí)行,將該節(jié)點作為parent重新開始判斷
}
}
}
}
更多關(guān)于JavaScript相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《JavaScript數(shù)據(jù)結(jié)構(gòu)與算法技巧總結(jié)》、《JavaScript數(shù)學運算用法總結(jié)》、《JavaScript排序算法總結(jié)》、《JavaScript遍歷算法與技巧總結(jié)》、《JavaScript查找算法技巧總結(jié)》及《JavaScript錯誤與調(diào)試技巧總結(jié)》
希望本文所述對大家JavaScript程序設(shè)計有所幫助。
- JS實現(xiàn)二叉查找樹的建立以及一些遍歷方法實現(xiàn)
- JavaScript數(shù)據(jù)結(jié)構(gòu)與算法之二叉樹實現(xiàn)查找最小值、最大值、給定值算法示例
- JavaScript實現(xiàn)二叉樹定義、遍歷及查找的方法詳解
- JavaScript數(shù)據(jù)結(jié)構(gòu)之二叉樹的查找算法示例
- JS實現(xiàn)的二叉樹算法完整實例
- JavaScript實現(xiàn)二叉樹的先序、中序及后序遍歷方法詳解
- javascript實現(xiàn)二叉樹遍歷的代碼
- Javascript實現(xiàn)從小到大的數(shù)組轉(zhuǎn)換成二叉搜索樹
- JavaScript數(shù)據(jù)結(jié)構(gòu)之二叉樹的刪除算法示例
- JavaScript實現(xiàn)的DOM樹遍歷方法詳解【二叉DOM樹、多叉DOM樹】
- JavaScript數(shù)據(jù)結(jié)構(gòu)之二叉樹的遍歷算法示例
- JS中的算法與數(shù)據(jù)結(jié)構(gòu)之二叉查找樹(Binary Sort Tree)實例詳解
相關(guān)文章
原生js獲取iframe中dom元素--父子頁面相互獲取對方dom元素的方法
下面小編就為大家?guī)硪黄鷍s獲取iframe中dom元素--父子頁面相互獲取對方dom元素的方法。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2016-08-08
理解與使用JavaScript中的回調(diào)函數(shù)
這篇文章主要介紹了JavaScript中的回調(diào)函數(shù),想詳細了解回調(diào)函數(shù)的同學,一定要看一下2021-04-04
微信小程序配置服務(wù)器提示驗證token失敗的解決方法
這篇文章主要介紹了微信小程序配置服務(wù)器提示驗證token失敗的解決方法,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2019-04-04
小程序自定義單頁面、全局導(dǎo)航欄的實現(xiàn)代碼
這篇文章主要介紹了小程序自定義單頁面、全局導(dǎo)航欄的實現(xiàn)代碼,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2019-03-03

