欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

詳談javascript精度問題與調(diào)整

 更新時(shí)間:2017年07月08日 09:16:26   投稿:jingxian  
下面小編就為大家?guī)硪黄斦刯avascript精度問題與調(diào)整。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧

一個(gè)經(jīng)典的問題:

0.1+0.2==0.3

答案是:false

因?yàn)椋?.1+0.2=0.30000000000000004

第一次看到這個(gè)結(jié)果就是無(wú)比驚訝,下巴碰到地上,得深入了解下問題出在哪里,該怎么去調(diào)整。

產(chǎn)生問題的原因

在JS中數(shù)值類型就只有number類型,沒有int,float,double之分,number類型實(shí)際上存儲(chǔ)的就是IEEE754標(biāo)準(zhǔn)的浮點(diǎn)數(shù),計(jì)算規(guī)則也是。

在表達(dá)式計(jì)算前,先要按照標(biāo)準(zhǔn)將兩個(gè)數(shù)轉(zhuǎn)成浮點(diǎn)數(shù)。

IEEE 754規(guī)定:

1.32位的浮點(diǎn)數(shù)(單精度),最高的1位是符號(hào)位S,接著的8位是指數(shù)E,剩下的23位為有效數(shù)字M。

浮點(diǎn)數(shù)的表現(xiàn)形式:

x=(-1)^S*m*2^(e+127)

m=1.M

E=e+127

2.64位的浮點(diǎn)數(shù)(雙精度),最高的1位是符號(hào)位S,接著的11位是指數(shù)E,剩下的52位為有效數(shù)字M。

浮點(diǎn)數(shù)的表現(xiàn)形式:

x=(-1)^S*m*2^(e+1023)

m=1.M

E=e+1023

我們就按照雙精度浮點(diǎn)數(shù)的標(biāo)準(zhǔn)轉(zhuǎn)一下看看。

首先按照規(guī)則將0.1轉(zhuǎn)成二進(jìn)制的浮點(diǎn)數(shù)。

0.1*2=0.2 //0
0.2*2=0.4 //00
0.4*2=0.8 //000
0.8*2=1.6 //0001
0.6*2=1.2 //00011
0.2*2=0.4 //000110
0.4*2=0.8 //0001100
0.8*2=1.6 //00011001
0.6*2=1.2 //000110011
0.2*2=0.4 //0001100110
0.4*2=0.8 //00011001100
0.8*2=1.6 //000110011001
0.6*2=1.2 //0001100110011
0.2*2=0.4 //00011001100110
0.4*2=0.8 //000110011001100
0.8*2=1.6 //0001100110011001
0.6*2=1.2 //00011001100110011
//省略

在轉(zhuǎn)換中,會(huì)發(fā)現(xiàn)小數(shù)位的二進(jìn)制值在不停的重復(fù),轉(zhuǎn)換沒完沒了了,因?yàn)槌瞬槐M啊,不是10的倍數(shù)。

轉(zhuǎn)換也不可能一直重復(fù)下去,按照標(biāo)準(zhǔn)規(guī)格化的要求湊滿。

轉(zhuǎn)換結(jié)果:

0.00011001100110011001100110011001100110011001100110011001

精度問題產(chǎn)生的第一個(gè)原因就在這里誕生了,按照標(biāo)準(zhǔn)算出來的二進(jìn)制浮點(diǎn)數(shù)并不能都精確的表示一個(gè)小數(shù),只是無(wú)限近似,0.5可以,因?yàn)?是10的倍數(shù),轉(zhuǎn)出來的小數(shù)位二進(jìn)制不會(huì)重復(fù)。

我們看看再轉(zhuǎn)回小數(shù)會(huì)怎么樣,按照公式寫成:

0*2^-1 + 0*2^-2 + 0*2^-3 + 1*2^-4 + 1*2^-5 + 0*2^-6 + 0*2^-7 + 1*2^-8 + 1*2^-9 + 0*2^-10 + 0*2^-11 + 1*2^-12 + 1*2^-13 + 0*2^-14 + 0*2^-15 + 1*2^-16 + 1*2^-17 + 0*2^-18 + 0*2^-19 + 1*2^-20 + 1*2^-21 + 0*2^-22 + 0*2^-23 + 1*2^-24 + 1*2^-25 + 0*2^-26 + 0*2^-27 + 1*2^-28 + 1*2^-29 + 0*2^-30 + 0*2^-31 + 1*2^-32 + 1*2^-33 + 0*2^-34 + 0*2^-35 + 1*2^-36 + 1*2^-37 + 0*2^-38 + 0*2^-39 + 1*2^-40 + 1*2^-41 + 0*2^-42 + 0*2^-43 + 1*2^-44 + 1*2^-45 + 0*2^-46 + 0*2^-47 + 1*2^-48 + 1*2^-49 + 0*2^-50 + 0*2^-51 + 1*2^-52 + 1*2^-53 + 0*2^-54 + 0*2^-55 + 1*2^-56

計(jì)算結(jié)果:

0.09999999999999999167332731531133

精度就在這里丟了一次。就是轉(zhuǎn)換成小數(shù)位的二進(jìn)制的時(shí)候。

按照表現(xiàn)形式的要求,要寫成x=(-1)^s*m*2^(e+1023),m=1.M的格式,按照要求尾數(shù)m的左邊最高位總是1,所以要上面小數(shù)二進(jìn)制結(jié)果的小數(shù)點(diǎn)進(jìn)行移動(dòng)

移動(dòng)前:

0.00011001100110011001100110011001100110011001100110011001

移動(dòng)后:

1.1001100110011001100110011001100110011001100110011001*2^-4

小數(shù)點(diǎn)右邊選取要求的52位,上面的結(jié)果因?yàn)槭翘崆八愫?,所以就省略了截取工作?/p>

因?yàn)樾?shù)點(diǎn)最左側(cè)的最高位總是1,所以它是不用存儲(chǔ)的,那么雖然存儲(chǔ)的是52位,但實(shí)際上可以表示53位的浮點(diǎn)數(shù)。

S=0,E=-4+1023=1019,m=1.M=1.1001100110011001100110011001100110011001100110011001,M=1001100110011001100110011001100110011001100110011001

浮點(diǎn)數(shù)表示:

x=-1^0*1.1001100110011001100110011001100110011001100110011001*2^1019

浮點(diǎn)數(shù)存儲(chǔ)值(最高的1位是符號(hào)位S,接著的11位是指數(shù)E,剩下的52位為有效數(shù)字M):

0 ‭001111111011‬ 1001100110011001100110011001100110011001100110011001

同理0.2的IEEE754的轉(zhuǎn)換后的結(jié)果:

浮點(diǎn)數(shù)表示:

-1^0*1.1001100110011001100110011001100110011001100110011001*2^1020

浮點(diǎn)數(shù)存儲(chǔ)值(最高的1位是符號(hào)位S,接著的11位是指數(shù)E,剩下的52位為有效數(shù)字M):

0 ‭001111111100‬ 1001100110011001100110011001100110011001100110011001

接下來,按照IEEE754的加法規(guī)則,運(yùn)算過程為:

1.0操作數(shù)的檢查。

2.比較階碼大小并對(duì)階。

3.尾數(shù)進(jìn)行加法運(yùn)算。

4.結(jié)果規(guī)格化。

5.舍入處理。

6.溢出處理。

按照計(jì)算過程,結(jié)果規(guī)格化、舍入處理、溢出處理都會(huì)遭成精度問題。

總結(jié)來看,造成精度問題的環(huán)節(jié):

1.小數(shù)向二進(jìn)制轉(zhuǎn)換。

2.運(yùn)算過程中的規(guī)格化,舍入、溢出處理。

精度調(diào)整

兩種方法可以進(jìn)行調(diào)整。

1.使用toFixed函數(shù)對(duì)小數(shù)位進(jìn)行四舍五入。

但是其返回值是字符串,其參數(shù)是0 ~ 20之間的值,需要注意。

(0.1+0.2).toFixed(1) // '0.3'

2.無(wú)小數(shù)運(yùn)算,運(yùn)算結(jié)果附上小數(shù)點(diǎn)

使用該方法,要注意因?yàn)橐兂烧麛?shù)再計(jì)算,對(duì)于一個(gè)小數(shù)點(diǎn)后位數(shù)很多的數(shù)來運(yùn)算的時(shí)候,要注意溢出。

//加
function add(arg1,arg2){ 
 var digits1,digits2,maxDigits; 
 try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0} 
 try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0} 
 maxDigits=Math.pow(10,Math.max(digits1,digits2)) 
 return (arg1*maxDigits+arg2*maxDigits)/maxDigits 
} 
 
//減
function sub(arg1,arg2){ 
 var digits1,digits2,maxDigits; 
 try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0} 
 try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0} 
 maxDigits=Math.pow(10,Math.max(digits1,digits2)); 
 return (arg1*maxDigits-arg2*maxDigits)/maxDigits; 
} 

//乘
function mul(arg1,arg2) { 
 var digits=0,s1=arg1.toString(),s2=arg2.toString(); 
 try{digits+=s1.split(".")[1].length}catch(e){} 
 try{digits+=s2.split(".")[1].length}catch(e){}
 return Number(s1.replace(".",""))*Number(s2.replace(".",""))/Math.pow(10,digits); 
}

//除
function div(arg1,arg2){ 
 var int1=0,int2=0,digits1,digits2; 
 try{digits1=arg1.toString().split(".")[1].length}catch(e){digits1=0} 
 try{digits2=arg2.toString().split(".")[1].length}catch(e){digits2=0} 
 
 int1=Number(arg1.toString().replace(".","")) 
 int2=Number(arg2.toString().replace(".","")) 
 return (int1/int2)*Math.pow(10,digits2-digits1); 

}

以上這篇詳談javascript精度問題與調(diào)整就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

最新評(píng)論