MongoDB如何查詢耗時(shí)記錄的方法詳解
準(zhǔn)備
在此之前,我們先在我們的數(shù)據(jù)庫中插入10萬條數(shù)據(jù)。數(shù)據(jù)的格式是這樣的:
{ "name":"your name", "age":22, "gender":"male", "grade":2 }
explain
explain方法是用來查看db.collecion.find()
的一些查詢信息的。例如:
db.collectionName.find().explain()
explain方法有個(gè)可選的參數(shù)verbose,是個(gè)字符串,他表示的是verbose的模式。一共分為3種模式:
queryPlanner:默認(rèn)參數(shù),詳細(xì)說明查詢優(yōu)化器選擇的計(jì)劃并列出被拒絕的計(jì)劃。例如:
db.students.find({grade:1}).explain()
executionStats:MongoDB運(yùn)行查詢優(yōu)化器選擇獲勝的計(jì)劃,執(zhí)行計(jì)劃,完成并返回成功,統(tǒng)計(jì)描述的勝利計(jì)劃的執(zhí)行。例如:
db.students.find({grade:1}).explain("executionStats")
allPlansExecution:MongoDB返回描述獲獎(jiǎng)計(jì)劃的執(zhí)行以及對(duì)其他候選人統(tǒng)計(jì)計(jì)劃選擇方案時(shí)捕獲的統(tǒng)計(jì)。
我們的目的是要記錄執(zhí)行find方法的耗時(shí)時(shí)間,所以用executionStats模式就可以了。
返回的結(jié)果也是只關(guān)注executionStats就可以了,如下圖:
- nReturned:表示該查詢條件下返回的文檔數(shù)量。
- executionTimeMills:表示執(zhí)行時(shí)間,單位毫秒
- totalDocsExamined:表示該集合總共文檔數(shù)。
其他的屬性在這里就不多說了,記錄耗時(shí)我們只取executionTimeMills.
Profiling
上面提到的方法好像是只適用find方法,對(duì)于一些聚合查詢之類的查詢方法就無法統(tǒng)計(jì)耗時(shí)時(shí)間了。這里再介紹一個(gè)profiling方法記錄查詢耗時(shí)時(shí)間。
開啟 Profiling 功能
有兩種方式可以控制 Profiling 的開關(guān)和級(jí)別,第一種是直接在啟動(dòng)參數(shù)里直接進(jìn)行設(shè)置。
- 啟動(dòng)MongoDB時(shí)加上–profile=級(jí)別 即可。
- 也可以在客戶端調(diào)用
db.setProfilingLevel
(級(jí)別)命令來實(shí)時(shí)配置。可以通過db.getProfilingLevel()
命令來獲取當(dāng)前的Profile級(jí)別。
例如:
db.setProfilingLevel(2) db.getProfilingLevel()
Profiling一共分為3個(gè)級(jí)別:
- 0 - 不開啟。
- 1 - 記錄慢命令 (默認(rèn)為>100ms)
- 3 - 記錄所有命令
Profile 記錄在級(jí)別1時(shí)會(huì)記錄慢命令,那么這個(gè)慢的定義是什么?上面我們說到其默認(rèn)為100ms,當(dāng)然有默認(rèn)就有設(shè)置,其設(shè)置方法和級(jí)別一樣有兩種,一種是通過添 加–slowms啟動(dòng)參數(shù)配置。第二種是調(diào)用db.setProfilingLevel
時(shí)加上第二個(gè)參數(shù):
db.setProfilingLevel( level , slowms) db.setProfilingLevel( 1 , 10 );
查詢 Profiling 記錄
開啟profiling功能后,系統(tǒng)會(huì)把相關(guān)命令詳細(xì)信息記錄到當(dāng)前數(shù)據(jù)庫的system.profile
集合里。查詢方法也是跟普通的集合查詢一樣。
db.system.profile.find()
其中,mills就是命令耗時(shí)記錄。
由于我們?cè)O(shè)置的級(jí)別是2,所以所有命令都有記錄,現(xiàn)在我們把他改為級(jí)別1,且只記錄耗時(shí)20毫秒以上的記錄:
db.setProfilingLevel( 1 , 20)
然后我們?cè)賵?zhí)行一下聚合查詢,查看下耗時(shí)時(shí)間:
db.students.aggregate( {$group:{_id:"$grade",avgAge:{$avg:"$age"}}} )
db.system.profile.find().pretty()
可以看出,我們的這聚合查詢耗時(shí)70毫秒。
profile 部分字段解釋
- op:操作類型
- ns:被查的集合
- commond:命令的內(nèi)容
- docsExamined:掃描文檔數(shù)
- nreturned:返回記錄數(shù)
- millis:耗時(shí)時(shí)間,單位毫秒
- ts:命令執(zhí)行時(shí)間
- responseLength:返回內(nèi)容長(zhǎng)度
下面介紹幾個(gè)常用的查詢命令:
列出執(zhí)行時(shí)間長(zhǎng)于某一限度(例如:20ms)的 Profile 記錄.
db.system.profile.find({millis:{$gt:50}})
查看最新的 3條Profile 記錄:
db.system.profile.find().sort({$natural:-1}).limit(3)
查看關(guān)于某個(gè)collection的相關(guān)慢查詢操作:
db.system.profile.find({ns:'mydb.students'})
MongoDB 查詢優(yōu)化
docsExamined(掃描的記錄數(shù))遠(yuǎn)大于nreturned(返回結(jié)果的記錄數(shù))的話,那么我們就要考慮通過加索引來優(yōu)化記錄定位了。
responseLength 如果過大,那么說明我們返回的結(jié)果集太大了,這時(shí)請(qǐng)查看find函數(shù)的第二個(gè)參數(shù)是否只寫上了你需要的屬性名。(類似 于MySQL中不要總是select)
對(duì)于創(chuàng)建索引的建議是:如果很少讀,那么盡量不要添加索引,因?yàn)樗饕蕉?,寫操作?huì)越慢。如果讀量很大,那么創(chuàng)建索引還是比較劃算的。
Profiler 的效率
Profiling 功能肯定是會(huì)影響效率的,但是不太嚴(yán)重,原因是他使用的是system.profile 來記錄,而system.profile
是一個(gè)capped collection 這種collection 在操作上有一些限制和特點(diǎn),但是效率更高。
總結(jié)
以上就是這篇文章的全部?jī)?nèi)容了,希望本文的內(nèi)容對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,如果有疑問大家可以留言交流,謝謝大家對(duì)腳本之家的支持。
- 關(guān)于Mongodb 認(rèn)證鑒權(quán)你需要知道的一些事
- linux系統(tǒng)下MongoDB單節(jié)點(diǎn)安裝教程
- vue+socket.io+express+mongodb 實(shí)現(xiàn)簡(jiǎn)易多房間在線群聊示例
- node.js操作MongoDB的實(shí)例詳解
- windows7下使用MongoDB實(shí)現(xiàn)倉儲(chǔ)設(shè)計(jì)
- java操作mongoDB查詢的實(shí)例詳解
- MongoDB 3.4 安裝以 Windows 服務(wù)方式運(yùn)行的詳細(xì)步驟
- 詳解MongoDB數(shù)據(jù)庫基礎(chǔ)操作及實(shí)例
- MongoDB TTL索引的實(shí)例詳解
相關(guān)文章
MongoDB增刪查改操作示例【基于JavaScript Shell】
這篇文章主要介紹了MongoDB增刪查改操作,結(jié)合實(shí)例形式分析了MongoDB數(shù)據(jù)庫基于JavaScript Shell的基本增刪查改操作技巧與使用注意事項(xiàng),需要的朋友可以參考下2019-07-07為MongoDB數(shù)據(jù)庫注冊(cè)windows服務(wù)
這篇文章介紹了為MongoDB數(shù)據(jù)庫注冊(cè)windows服務(wù)的方法,對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2022-06-06MongoDB中優(yōu)雅刪除大量數(shù)據(jù)的三種方式
最近接到一個(gè)任務(wù),線上的mongodb積累了大量的無用數(shù)據(jù),導(dǎo)致宕機(jī),現(xiàn)在對(duì)里面的數(shù)據(jù)進(jìn)行批量刪除,所以這篇文章主要給大家介紹了關(guān)于MongoDB中優(yōu)雅刪除大量數(shù)據(jù)的三種方式,需要的朋友可以參考下2021-10-10windows與mac安裝mongodb數(shù)據(jù)庫的方法步驟與注意事項(xiàng)
今天小編就為大家分享一篇關(guān)于windows與mac安裝mongodb數(shù)據(jù)庫的方法步驟與注意事項(xiàng),小編覺得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來看看吧2019-03-03MongoDB如何更新多級(jí)文檔的數(shù)據(jù)
MongoDB 這類文檔型數(shù)據(jù)庫與關(guān)系型數(shù)據(jù)庫最大的差別就是所有數(shù)據(jù)是按文檔存儲(chǔ)的,因此更新時(shí)會(huì)涉及深層數(shù)據(jù)更新,例如更如何新某個(gè)對(duì)象的下級(jí)對(duì)象屬性。本篇介紹如何更新多級(jí)文檔的數(shù)據(jù)。2021-06-06