詳解Java中Method的Invoke方法
在寫代碼的時候,發(fā)現(xiàn)從父類class通過getDeclaredMethod獲取的Method可以調(diào)用子類的對象,而子類改寫了這個方法,從子類class通過getDeclaredMethod也能獲取到Method,這時去調(diào)用父類的對象也會報錯。雖然這是很符合多態(tài)的現(xiàn)象,也符合java的動態(tài)綁定規(guī)范,但還是想弄懂java是如何實(shí)現(xiàn)的,就學(xué)習(xí)了下Method的源代碼。
Method的invoke方法
1.先檢查 AccessibleObject的override屬性是否為true。
AccessibleObject是Method,Field,Constructor的父類,override屬性默認(rèn)為false,可調(diào)用setAccessible方法改變,如果設(shè)置為true,則表示可以忽略訪問權(quán)限的限制,直接調(diào)用。
2.如果不是ture,則要進(jìn)行訪問權(quán)限檢測。用Reflection的quickCheckMemberAccess方法先檢查是不是public的,如果不是再用Reflection.getCallerClass(1)方法獲
得到調(diào)用這個方法的Class,然后做是否有權(quán)限訪問的校驗(yàn),校驗(yàn)之后緩存一次,以便下次如果還是這個類來調(diào)用就不用去做校驗(yàn)了,直接用上次的結(jié)果,(很奇怪用這種方式緩存,因?yàn)檫@種方式如果下次換個類來調(diào)用的話,就不用會緩存了,而再驗(yàn)證一遍,把這次的結(jié)果做為緩存,但上一次的緩存結(jié)果就被沖掉了。這是一個很簡單的緩沖機(jī)制,只適用于一個類的重復(fù)調(diào)用)。
3.調(diào)用MethodAccessor的invoke方法。每個Method對象包含一個root對象,root對象里持有一個MethodAccessor對象。我們獲得的Method獨(dú)享相當(dāng)于一個root對象的鏡像,所有這類Method共享root里的MethodAccessor對象,(這個對象由ReflectionFactory方法生成,ReflectionFactory對象在Method類中是static final的由native方法實(shí)例化)。
ReflectionFactory生成MethodAccessor:如果noInflation的屬性為true則直接返回MethodAccessorGenerator創(chuàng)建的一個MethodAccessor。否則返回DelegatingMethodAccessorImpl,并將他與一個NativeMethodAccessorImpl互相引用。但DelegatingMethodAccessorImpl執(zhí)行invoke方法的時候又委托給NativeMethodAccessorImpl了。
再一步深入
4.NativeMethodAccessorImpl的invkoe方法:
調(diào)用natiave方法invoke0執(zhí)行方法調(diào)用.
注意這里有一個計(jì)數(shù)器numInvocations,每調(diào)用一次方法+1,當(dāng)比 ReflectionFactory.inflationThreshold(15)大的時候,用MethodAccessorGenerator創(chuàng)建一個MethodAccessor,并把之前的DelegatingMethodAccessorImpl引用替換為現(xiàn)在新創(chuàng)建的。下一次DelegatingMethodAccessorImpl就不會再交給NativeMethodAccessorImpl執(zhí)行了,而是交給新生成的java字節(jié)碼的MethodAccessor。
MethodAccessorGenerator使用了asm字節(jié)碼動態(tài)加載技術(shù),暫不深入研究。
總結(jié) 一個方法可以生成多個Method對象,但只有一個root對象,主要用于持有一個MethodAccessor對象,這個對象也可以認(rèn)為一個方法只有一個,相當(dāng)于是static的。因?yàn)镸ethod的invoke是交給MethodAccessor執(zhí)行的,所以我所想要知道的答案在MethodAccessor的invoke中,深入MethodAccessor:
------------------------------------------MethodAccessor---------------------------------
假如有這么一個類A:
public class A { public void foo(String name) { System.out.println("Hello, " + name); } }
可以編寫另外一個類來反射調(diào)用A上的方法:
import java.lang.reflect.Method; public class TestClassLoad { public static void main(String[] args) throws Exception { Class<?> clz = Class.forName("A"); Object o = clz.newInstance(); Method m = clz.getMethod("foo", String.class); for (int i = 0; i < 16; i++) { m.invoke(o, Integer.toString(i)); } } }
注意到TestClassLoad類上不會有對類A的符號依賴——也就是說在加載并初始化TestClassLoad類時不需要關(guān)心類A的存在與否,而是等到main()方法執(zhí)行到調(diào)用Class.forName()時才試圖對類A做動態(tài)加載;這里用的是一個參數(shù)版的forName(),也就是使用當(dāng)前方法所在類的ClassLoader來加載,并且初始化新加載的類。……好吧這個細(xì)節(jié)跟主題沒啥關(guān)系。
回到主題。這次我的測試環(huán)境是Sun的JDK 1.6.0 update 13 build 03。編譯上述代碼,并在執(zhí)行TestClassLoad時加入-XX:+TraceClassLoading參數(shù)(或者-verbose:class或者直接-verbose都行),如下:
控制臺命令
java -XX:+TraTestClassLoad ceClassLoading
可以看到輸出了一大堆log,把其中相關(guān)的部分截取出來如下:
[Loaded TestClassLoad from file:/D:/temp_code/test_java_classload/] [Loaded A from file:/D:/temp_code/test_java_classload/] [Loaded sun.reflect.NativeMethodAccessorImpl from shared objects file] [Loaded sun.reflect.DelegatingMethodAccessorImpl from shared objects file] Hello, 0 Hello, 1 Hello, 2 Hello, 3 Hello, 4 Hello, 5 Hello, 6 Hello, 7 Hello, 8 Hello, 9 Hello, 10 Hello, 11 Hello, 12 Hello, 13 Hello, 14 [Loaded sun.reflect.ClassFileConstants from shared objects file] [Loaded sun.reflect.AccessorGenerator from shared objects file] [Loaded sun.reflect.MethodAccessorGenerator from shared objects file] [Loaded sun.reflect.ByteVectorFactory from shared objects file] [Loaded sun.reflect.ByteVector from shared objects file] [Loaded sun.reflect.ByteVectorImpl from shared objects file] [Loaded sun.reflect.ClassFileAssembler from shared objects file] [Loaded sun.reflect.UTF8 from shared objects file] [Loaded java.lang.Void from shared objects file] [Loaded sun.reflect.Label from shared objects file] [Loaded sun.reflect.Label$PatchInfo from shared objects file] [Loaded java.util.AbstractList$Itr from shared objects file] [Loaded sun.reflect.MethodAccessorGenerator$1 from shared objects file] [Loaded sun.reflect.ClassDefiner from shared objects file] [Loaded sun.reflect.ClassDefiner$1 from shared objects file] [Loaded sun.reflect.GeneratedMethodAccessor1 from __JVM_DefineClass__] Hello, 15
可以看到前15次反射調(diào)用A.foo()方法并沒有什么稀奇的地方,但在第16次反射調(diào)用時似乎有什么東西被觸發(fā)了,導(dǎo)致JVM新加載了一堆類,其中就包括[Loaded sun.reflect.GeneratedMethodAccessor1 from __JVM_DefineClass__]這么一行。這是哪里來的呢?
先來看看JDK里Method.invoke()是怎么實(shí)現(xiàn)的。
java.lang.reflect.Method: public final class Method extends AccessibleObject implements GenericDeclaration, Member { // ... private volatile MethodAccessor methodAccessor; // For sharing of MethodAccessors. This branching structure is // currently only two levels deep (i.e., one root Method and // potentially many Method objects pointing to it.) private Method root; // ... public Object invoke(Object obj, Object... args) throws IllegalAccessException, IllegalArgumentException, InvocationTargetException { if (!override) { if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) { Class caller = Reflection.getCallerClass(1); Class targetClass = ((obj == null || !Modifier.isProtected(modifiers)) ? clazz : obj.getClass()); boolean cached; synchronized (this) { cached = (securityCheckCache == caller) && (securityCheckTargetClassCache == targetClass); } if (!cached) { Reflection.ensureMemberAccess(caller, clazz, obj, modifiers); synchronized (this) { securityCheckCache = caller; securityCheckTargetClassCache = targetClass; } } } } if (methodAccessor == null) acquireMethodAccessor(); return methodAccessor.invoke(obj, args); } // NOTE that there is no synchronization used here. It is correct // (though not efficient) to generate more than one MethodAccessor // for a given Method. However, avoiding synchronization will // probably make the implementation more scalable. private void acquireMethodAccessor() { // First check to see if one has been created yet, and take it // if so MethodAccessor tmp = null; if (root != null) tmp = root.getMethodAccessor(); if (tmp != null) { methodAccessor = tmp; return; } // Otherwise fabricate one and propagate it up to the root tmp = reflectionFactory.newMethodAccessor(this); setMethodAccessor(tmp); } // ... }
可以看到Method.invoke()實(shí)際上并不是自己實(shí)現(xiàn)的反射調(diào)用邏輯,而是委托給sun.reflect.MethodAccessor來處理。
每個實(shí)際的Java方法只有一個對應(yīng)的Method對象作為root,。這個root是不會暴露給用戶的,而是每次在通過反射獲取Method對象時新創(chuàng)建Method對象把root包裝起來再給用戶。在第一次調(diào)用一個實(shí)際Java方法對應(yīng)得Method對象的invoke()方法之前,實(shí)現(xiàn)調(diào)用邏輯的MethodAccessor對象還沒創(chuàng)建;等第一次調(diào)用時才新創(chuàng)建MethodAccessor并更新給root,然后調(diào)用MethodAccessor.invoke()真正完成反射調(diào)用。
那么MethodAccessor是啥呢?
sun.reflect.MethodAccessor: public interface MethodAccessor { /** Matches specification in {@link java.lang.reflect.Method} */ public Object invoke(Object obj, Object[] args) throws IllegalArgumentException, InvocationTargetException; }
可以看到它只是一個單方法接口,其invoke()方法與Method.invoke()的對應(yīng)。
創(chuàng)建MethodAccessor實(shí)例的是ReflectionFactory。
sun.reflect.ReflectionFactory: public class ReflectionFactory { private static boolean initted = false; // ... // // "Inflation" mechanism. Loading bytecodes to implement // Method.invoke() and Constructor.newInstance() currently costs // 3-4x more than an invocation via native code for the first // invocation (though subsequent invocations have been benchmarked // to be over 20x faster). Unfortunately this cost increases // startup time for certain applications that use reflection // intensively (but only once per class) to bootstrap themselves. // To avoid this penalty we reuse the existing JVM entry points // for the first few invocations of Methods and Constructors and // then switch to the bytecode-based implementations. // // Package-private to be accessible to NativeMethodAccessorImpl // and NativeConstructorAccessorImpl private static boolean noInflation = false; private static int inflationThreshold = 15; // ... /** We have to defer full initialization of this class until after the static initializer is run since java.lang.reflect.Method's static initializer (more properly, that for java.lang.reflect.AccessibleObject) causes this class's to be run, before the system properties are set up. */ private static void checkInitted() { if (initted) return; AccessController.doPrivileged(new PrivilegedAction() { public Object run() { // Tests to ensure the system properties table is fully // initialized. This is needed because reflection code is // called very early in the initialization process (before // command-line arguments have been parsed and therefore // these user-settable properties installed.) We assume that // if System.out is non-null then the System class has been // fully initialized and that the bulk of the startup code // has been run. if (System.out == null) { // java.lang.System not yet fully initialized return null; } String val = System.getProperty("sun.reflect.noInflation"); if (val != null && val.equals("true")) { noInflation = true; } val = System.getProperty("sun.reflect.inflationThreshold"); if (val != null) { try { inflationThreshold = Integer.parseInt(val); } catch (NumberFormatException e) { throw (RuntimeException) new RuntimeException("Unable to parse property sun.reflect.inflationThreshold"). initCause(e); } } initted = true; return null; } }); } // ... public MethodAccessor newMethodAccessor(Method method) { checkInitted(); if (noInflation) { return new MethodAccessorGenerator(). generateMethod(method.getDeclaringClass(), method.getName(), method.getParameterTypes(), method.getReturnType(), method.getExceptionTypes(), method.getModifiers()); } else { NativeMethodAccessorImpl acc = new NativeMethodAccessorImpl(method); DelegatingMethodAccessorImpl res = new DelegatingMethodAccessorImpl(acc); acc.setParent(res); return res; } } }
這里就可以看到有趣的地方了。如注釋所述,實(shí)際的MethodAccessor實(shí)現(xiàn)有兩個版本,一個是Java實(shí)現(xiàn)的,另一個是native code實(shí)現(xiàn)的。Java實(shí)現(xiàn)的版本在初始化時需要較多時間,但長久來說性能較好;native版本正好相反,啟動時相對較快,但運(yùn)行時間長了之后速度就比不過Java版了。這是HotSpot的優(yōu)化方式帶來的性能特性,同時也是許多虛擬機(jī)的共同點(diǎn):跨越native邊界會對優(yōu)化有阻礙作用,它就像個黑箱一樣讓虛擬機(jī)難以分析也將其內(nèi)聯(lián),于是運(yùn)行時間長了之后反而是托管版本的代碼更快些。
為了權(quán)衡兩個版本的性能,Sun的JDK使用了“inflation”的技巧:讓Java方法在被反射調(diào)用時,開頭若干次使用native版,等反射調(diào)用次數(shù)超過閾值時則生成一個專用的MethodAccessor實(shí)現(xiàn)類,生成其中的invoke()方法的字節(jié)碼,以后對該Java方法的反射調(diào)用就會使用Java版。
Sun的JDK是從1.4系開始采用這種優(yōu)化的。
PS.可以在啟動命令里加上-Dsun.reflect.noInflation=true,就會RefactionFactory的noInflation屬性就變成true了,這樣不用等到15調(diào)用后,程序一開始就會用java版的MethodAccessor了。
上面看到了ReflectionFactory.newMethodAccessor()生產(chǎn)MethodAccessor的邏輯,在“開頭若干次”時用到的DelegatingMethodAccessorImpl代碼如下:
sun.reflect.DelegatingMethodAccessorImpl: /** Delegates its invocation to another MethodAccessorImpl and can change its delegate at run time. */ class DelegatingMethodAccessorImpl extends MethodAccessorImpl { private MethodAccessorImpl delegate; DelegatingMethodAccessorImpl(MethodAccessorImpl delegate) { setDelegate(delegate); } public Object invoke(Object obj, Object[] args) throws IllegalArgumentException, InvocationTargetException { return delegate.invoke(obj, args); } void setDelegate(MethodAccessorImpl delegate) { this.delegate = delegate; } }
這是一個間接層,方便在native與Java版的MethodAccessor之間實(shí)現(xiàn)切換。
然后下面就是native版MethodAccessor的Java一側(cè)的聲明:
sun.reflect.NativeMethodAccessorImpl: /** Used only for the first few invocations of a Method; afterward, switches to bytecode-based implementation */ class NativeMethodAccessorImpl extends MethodAccessorImpl { private Method method; private DelegatingMethodAccessorImpl parent; private int numInvocations; NativeMethodAccessorImpl(Method method) { this.method = method; } public Object invoke(Object obj, Object[] args) throws IllegalArgumentException, InvocationTargetException { if (++numInvocations > ReflectionFactory.inflationThreshold()) { MethodAccessorImpl acc = (MethodAccessorImpl) new MethodAccessorGenerator(). generateMethod(method.getDeclaringClass(), method.getName(), method.getParameterTypes(), method.getReturnType(), method.getExceptionTypes(), method.getModifiers()); parent.setDelegate(acc); } return invoke0(method, obj, args); } void setParent(DelegatingMethodAccessorImpl parent) { this.parent = parent; } private static native Object invoke0(Method m, Object obj, Object[] args); }
每次NativeMethodAccessorImpl.invoke()方法被調(diào)用時,都會增加一個調(diào)用次數(shù)計(jì)數(shù)器,看超過閾值沒有;一旦超過,則調(diào)用MethodAccessorGenerator.generateMethod()來生成Java版的MethodAccessor的實(shí)現(xiàn)類,并且改變DelegatingMethodAccessorImpl所引用的MethodAccessor為Java版。后續(xù)經(jīng)由DelegatingMethodAccessorImpl.invoke()調(diào)用到的就是Java版的實(shí)現(xiàn)了。
注意到關(guān)鍵的invoke0()方法是個native方法。它在HotSpot VM里是由JVM_InvokeMethod()函數(shù)所支持的:
由C編寫
JNIEXPORT jobject JNICALL Java_sun_reflect_NativeMethodAccessorImpl_invoke0 (JNIEnv *env, jclass unused, jobject m, jobject obj, jobjectArray args) { return JVM_InvokeMethod(env, m, obj, args); } JVM_ENTRY(jobject, JVM_InvokeMethod(JNIEnv *env, jobject method, jobject obj, jobjectArray args0)) JVMWrapper("JVM_InvokeMethod"); Handle method_handle; if (thread->stack_available((address) &method_handle) >= JVMInvokeMethodSlack) { method_handle = Handle(THREAD, JNIHandles::resolve(method)); Handle receiver(THREAD, JNIHandles::resolve(obj)); objArrayHandle args(THREAD, objArrayOop(JNIHandles::resolve(args0))); oop result = Reflection::invoke_method(method_handle(), receiver, args, CHECK_NULL); jobject res = JNIHandles::make_local(env, result); if (JvmtiExport::should_post_vm_object_alloc()) { oop ret_type = java_lang_reflect_Method::return_type(method_handle()); assert(ret_type != NULL, "sanity check: ret_type oop must not be NULL!"); if (java_lang_Class::is_primitive(ret_type)) { // Only for primitive type vm allocates memory for java object. // See box() method. JvmtiExport::post_vm_object_alloc(JavaThread::current(), result); } } return res; } else { THROW_0(vmSymbols::java_lang_StackOverflowError()); }
JVM_END
其中的關(guān)鍵又是Reflection::invoke_method():
// This would be nicer if, say, java.lang.reflect.Method was a subclass // of java.lang.reflect.Constructor oop Reflection::invoke_method(oop method_mirror, Handle receiver, objArrayHandle args, TRAPS) { oop mirror = java_lang_reflect_Method::clazz(method_mirror); int slot = java_lang_reflect_Method::slot(method_mirror); bool override = java_lang_reflect_Method::override(method_mirror) != 0; objArrayHandle ptypes(THREAD, objArrayOop(java_lang_reflect_Method::parameter_types(method_mirror))); oop return_type_mirror = java_lang_reflect_Method::return_type(method_mirror); BasicType rtype; if (java_lang_Class::is_primitive(return_type_mirror)) { rtype = basic_type_mirror_to_basic_type(return_type_mirror, CHECK_NULL); } else { rtype = T_OBJECT; } instanceKlassHandle klass(THREAD, java_lang_Class::as_klassOop(mirror)); methodOop m = klass->method_with_idnum(slot); if (m == NULL) { THROW_MSG_0(vmSymbols::java_lang_InternalError(), "invoke"); } methodHandle method(THREAD, m); return invoke(klass, method, receiver, override, ptypes, rtype, args, true, THREAD); }
再下去就深入到HotSpot VM的內(nèi)部了,本文就在這里打住吧。有同學(xué)有興趣深究的話以后可以再寫一篇討論native版的實(shí)現(xiàn)。
MethodAccessorGenerator長啥樣呢?由于代碼太長,這里就不完整貼了。它的基本工作就是在內(nèi)存里生成新的專用Java類,并將其加載。就貼這么一個方法:
private static synchronized String generateName(boolean isConstructor, boolean forSerialization) { if (isConstructor) { if (forSerialization) { int num = ++serializationConstructorSymnum; return "sun/reflect/GeneratedSerializationConstructorAccessor" + num; } else { int num = ++constructorSymnum; return "sun/reflect/GeneratedConstructorAccessor" + num; } } else { int num = ++methodSymnum; return "sun/reflect/GeneratedMethodAccessor" + num; } }
去閱讀源碼的話,可以看到MethodAccessorGenerator是如何一點(diǎn)點(diǎn)把Java版的MethodAccessor實(shí)現(xiàn)類生產(chǎn)出來的。也可以看到GeneratedMethodAccessor+數(shù)字這種名字是從哪里來的了,就在上面的generateName()方法里。
對本文開頭的例子的A.foo(),生成的Java版MethodAccessor大致如下:
package sun.reflect; public class GeneratedMethodAccessor1 extends MethodAccessorImpl { public GeneratedMethodAccessor1() { super(); } public Object invoke(Object obj, Object[] args) throws IllegalArgumentException, InvocationTargetException { // prepare the target and parameters if (obj == null) throw new NullPointerException(); try { A target = (A) obj; if (args.length != 1) throw new IllegalArgumentException(); String arg0 = (String) args[0]; } catch (ClassCastException e) { throw new IllegalArgumentException(e.toString()); } catch (NullPointerException e) { throw new IllegalArgumentException(e.toString()); } // make the invocation try { target.foo(arg0); } catch (Throwable t) { throw new InvocationTargetException(t); } } }
就反射調(diào)用而言,這個invoke()方法非常干凈(然而就“正常調(diào)用”而言這額外開銷還是明顯的)。注意到參數(shù)數(shù)組被拆開了,把每個參數(shù)都恢復(fù)到原本沒有被Object[]包裝前的樣子,然后對目標(biāo)方法做正常的invokevirtual調(diào)用。由于在生成代碼時已經(jīng)循環(huán)遍歷過參數(shù)類型的數(shù)組,生成出來的代碼里就不再包含循環(huán)了。
至此找到我的答案了,因?yàn)镸ethodAccessor會做強(qiáng)制類型轉(zhuǎn)換再進(jìn)行方法調(diào)用,但父類強(qiáng)制轉(zhuǎn)化成子類的的時候就會報錯類型不匹配錯誤了,所以如果變量的引用聲明是父但實(shí)際指向的對象是子,那么這種調(diào)用也是可以的。
當(dāng)該反射調(diào)用成為熱點(diǎn)時,它甚至可以被內(nèi)聯(lián)到靠近Method.invoke()的一側(cè),大大降低了反射調(diào)用的開銷。而native版的反射調(diào)用則無法被有效內(nèi)聯(lián),因而調(diào)用開銷無法隨程序的運(yùn)行而降低。
雖說Sun的JDK這種實(shí)現(xiàn)方式使得反射調(diào)用方法成本比以前降低了很多,但Method.invoke()本身要用數(shù)組包裝參數(shù);而且每次調(diào)用都必須檢查方法的可見性(在Method.invoke()里),也必須檢查每個實(shí)際參數(shù)與形式參數(shù)的類型匹配性(在NativeMethodAccessorImpl.invoke0()里或者生成的Java版MethodAccessor.invoke()里);而且Method.invoke()就像是個獨(dú)木橋一樣,各處的反射調(diào)用都要擠過去,在調(diào)用點(diǎn)上收集到的類型信息就會很亂,影響內(nèi)聯(lián)程序的判斷,使得Method.invoke()自身難以被內(nèi)聯(lián)到調(diào)用方。
相比之下JDK7里新的MethodHandler則更有潛力,在其功能完全實(shí)現(xiàn)后能達(dá)到比普通反射調(diào)用方法更高的性能。在使用MethodHandle來做反射調(diào)用時,MethodHandle.invoke()的形式參數(shù)與返回值類型都是準(zhǔn)確的,所以只需要在鏈接方法的時候才需要檢查類型的匹配性,而不必在每次調(diào)用時都檢查。而且MethodHandle是不可變值,在創(chuàng)建后其內(nèi)部狀態(tài)就不會再改變了;JVM可以利用這個知識而放心的對它做激進(jìn)優(yōu)化,例如將實(shí)際的調(diào)用目標(biāo)內(nèi)聯(lián)到做反射調(diào)用的一側(cè)。
本來Java的安全機(jī)制使得不同類之間不是任意信息都可見,但Sun的JDK里開了個口,有一個標(biāo)記類專門用于開后門:
package sun.reflect;
/** <P> MagicAccessorImpl (named for parity with FieldAccessorImpl and others, not because it actually implements an interface) is a marker class in the hierarchy. All subclasses of this class are "magically" granted access by the VM to otherwise inaccessible fields and methods of other classes. It is used to hold the code for dynamically-generated FieldAccessorImpl and MethodAccessorImpl subclasses. (Use of the word "unsafe" was avoided in this class's name to avoid confusion with {@link sun.misc.Unsafe}.) </P> <P> The bug fix for 4486457 also necessitated disabling verification for this class and all subclasses, as opposed to just SerializationConstructorAccessorImpl and subclasses, to avoid having to indicate to the VM which of these dynamically-generated stub classes were known to be able to pass the verifier. </P> <P> Do not change the name of this class without also changing the VM's code. </P> */ class MagicAccessorImpl { }
那個"__JVM_DefineClass__"的來源是這里:
src/share/vm/prims/jvm.cpp // common code for JVM_DefineClass() and JVM_DefineClassWithSource() // and JVM_DefineClassWithSourceCond() static jclass jvm_define_class_common(JNIEnv *env, const char *name, jobject loader, const jbyte *buf, jsize len, jobject pd, const char *source, jboolean verify, TRAPS) { if (source == NULL) source = "__JVM_DefineClass__";
P.S. log里的"shared objects file",其實(shí)就是rt.jar,為什么要這么顯示,Stack OverFlow上有這樣的回答:
This is Class Data Sharing. When running the Sun/Oracle Client HotSpot and sharing enable (either -Xshare:auto which is the default, or -Xshare:on), the classes.jsa file is memory mapped. This file contains a number of classes (listed in the classlist file) in internal representation suitable for the exact configuration of the machine running it. The idea is that the classes can be loaded quickly, getting the the JVM up faster. Soon enough a class not covered will be hit, and rt.jar will need to be opened and classes loaded conventionally as required.
不能很好理解,大概理解就是所有jvm共享,并可以快速加載里面的class.有英文好的朋友可以留言幫助下。
P.S java內(nèi)聯(lián)函數(shù)
C++是否為內(nèi)聯(lián)函數(shù)由自己決定,Java由編譯器決定。內(nèi)聯(lián)函數(shù)就是指函數(shù)在被調(diào)用的地方直接展開,編譯器在調(diào)用時不用像一般函數(shù)那樣,參數(shù)壓棧,返回時參數(shù)出棧以及資源釋放等,這樣提高了程序執(zhí)行速度。
Java不支持直接聲明為內(nèi)聯(lián)函數(shù)的,如果想讓他內(nèi)聯(lián),則是由編譯器說了算,你只能夠向編譯器提出請求。
final除了不能被override外,還可能實(shí)現(xiàn)內(nèi)聯(lián)。如果函數(shù)為private,則也可能是內(nèi)聯(lián)的。
總的來說,一般的函數(shù)都不會被當(dāng)做內(nèi)聯(lián)函數(shù),只有聲明了final后,編譯器才會考慮是不是要把你的函數(shù)變成內(nèi)聯(lián)函數(shù)。
內(nèi)聯(lián)不一定好,當(dāng)被指定為內(nèi)聯(lián)的方法體很大時,展開的開銷可能就已經(jīng)超過了普通函數(shù)調(diào)用調(diào)用的時間,引入了內(nèi)聯(lián)反而降低了性能,因?yàn)樵谶x擇這個關(guān)鍵字應(yīng)該慎重些,不過,在以后高版本的JVM中,在處理內(nèi)聯(lián)時做出了優(yōu)化,它會根據(jù)方法的規(guī)模來確定是否展開調(diào)用。
總結(jié)
以上所述是小編給大家介紹的Java中Method的Invoke方法,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復(fù)大家的。在此也非常感謝大家對腳本之家網(wǎng)站的支持!
相關(guān)文章
詳解如何使用java實(shí)現(xiàn)Open Addressing
這篇文章主要介紹了詳解如何使用java實(shí)現(xiàn)Open Addressing,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-12-12iOS獲取AppIcon and LaunchImage''s name(app圖標(biāo)和啟動圖片名字)
這篇文章主要介紹了iOS獲取AppIcon and LaunchImage's name(app圖標(biāo)和啟動圖片名字)的相關(guān)資料,非常不錯,具有參考借鑒價值,感興趣的朋友一起學(xué)習(xí)吧2016-08-08