PHP實現(xiàn)圖的鄰接矩陣表示及幾種簡單遍歷算法分析
本文實例講述了PHP實現(xiàn)圖的鄰接矩陣表示及幾種簡單遍歷算法。分享給大家供大家參考,具體如下:
在web開發(fā)中圖這種數(shù)據(jù)結(jié)構(gòu)的應(yīng)用比樹要少很多,但在一些業(yè)務(wù)中也常有出現(xiàn),下面介紹幾種圖的尋徑算法,并用PHP加以實現(xiàn).
佛洛依德算法,主要是在頂點集內(nèi),按點與點相鄰邊的權(quán)重做遍歷,如果兩點不相連則權(quán)重?zé)o窮大,這樣通過多次遍歷可以得到點到點的最短路徑,邏輯上最好理解,實現(xiàn)也較為簡單,時間復(fù)雜度為O(n^3);
迪杰斯特拉算法,OSPF中實現(xiàn)最短路由所用到的經(jīng)典算法,djisktra算法的本質(zhì)是貪心算法,不斷的遍歷擴充頂點路徑集合S,一旦發(fā)現(xiàn)更短的點到點路徑就替換S中原有的最短路徑,完成所有遍歷后S便是所有頂點的最短路徑集合了.迪杰斯特拉算法的時間復(fù)雜度為O(n^2);
克魯斯卡爾算法,在圖內(nèi)構(gòu)造最小生成樹,達到圖中所有頂點聯(lián)通.從而得到最短路徑.時間復(fù)雜度為O(N*logN);
<?php /** * PHP 實現(xiàn)圖鄰接矩陣 */ class MGraph{ private $vexs; //頂點數(shù)組 private $arc; //邊鄰接矩陣,即二維數(shù)組 private $arcData; //邊的數(shù)組信息 private $direct; //圖的類型(無向或有向) private $hasList; //嘗試遍歷時存儲遍歷過的結(jié)點 private $queue; //廣度優(yōu)先遍歷時存儲孩子結(jié)點的隊列,用數(shù)組模仿 private $infinity = 65535;//代表無窮,即兩點無連接,建帶權(quán)值的圖時用,本示例不帶權(quán)值 private $primVexs; //prim算法時保存頂點 private $primArc; //prim算法時保存邊 private $krus;//kruscal算法時保存邊的信息 public function MGraph($vexs, $arc, $direct = 0){ $this->vexs = $vexs; $this->arcData = $arc; $this->direct = $direct; $this->initalizeArc(); $this->createArc(); } private function initalizeArc(){ foreach($this->vexs as $value){ foreach($this->vexs as $cValue){ $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity); } } } //創(chuàng)建圖 $direct:0表示無向圖,1表示有向圖 private function createArc(){ foreach($this->arcData as $key=>$value){ $strArr = str_split($key); $first = $strArr[0]; $last = $strArr[1]; $this->arc[$first][$last] = $value; if(!$this->direct){ $this->arc[$last][$first] = $value; } } } //floyd算法 public function floyd(){ $path = array();//路徑數(shù)組 $distance = array();//距離數(shù)組 foreach($this->arc as $key=>$value){ foreach($value as $k=>$v){ $path[$key][$k] = $k; $distance[$key][$k] = $v; } } for($j = 0; $j < count($this->vexs); $j ++){ for($i = 0; $i < count($this->vexs); $i ++){ for($k = 0; $k < count($this->vexs); $k ++){ if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){ $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]]; $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]; } } } } return array($path, $distance); } //djikstra算法 public function dijkstra(){ $final = array(); $pre = array();//要查找的結(jié)點的前一個結(jié)點數(shù)組 $weight = array();//權(quán)值和數(shù)組 foreach($this->arc[$this->vexs[0]] as $k=>$v){ $final[$k] = 0; $pre[$k] = $this->vexs[0]; $weight[$k] = $v; } $final[$this->vexs[0]] = 1; for($i = 0; $i < count($this->vexs); $i ++){ $key = 0; $min = $this->infinity; for($j = 1; $j < count($this->vexs); $j ++){ $temp = $this->vexs[$j]; if($final[$temp] != 1 && $weight[$temp] < $min){ $key = $temp; $min = $weight[$temp]; } } $final[$key] = 1; for($j = 0; $j < count($this->vexs); $j ++){ $temp = $this->vexs[$j]; if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){ $pre[$temp] = $key; $weight[$temp] = $min + $this->arc[$key][$temp]; } } } return $pre; } //kruscal算法 private function kruscal(){ $this->krus = array(); foreach($this->vexs as $value){ $krus[$value] = 0; } foreach($this->arc as $key=>$value){ $begin = $this->findRoot($key); foreach($value as $k=>$v){ $end = $this->findRoot($k); if($begin != $end){ $this->krus[$begin] = $end; } } } } //查找子樹的尾結(jié)點 private function findRoot($node){ while($this->krus[$node] > 0){ $node = $this->krus[$node]; } return $node; } //prim算法,生成最小生成樹 public function prim(){ $this->primVexs = array(); $this->primArc = array($this->vexs[0]=>0); for($i = 1; $i < count($this->vexs); $i ++){ $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]]; $this->primVexs[$this->vexs[$i]] = $this->vexs[0]; } for($i = 0; $i < count($this->vexs); $i ++){ $min = $this->infinity; $key; foreach($this->vexs as $k=>$v){ if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){ $key = $v; $min = $this->primArc[$v]; } } $this->primArc[$key] = 0; foreach($this->arc[$key] as $k=>$v){ if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){ $this->primArc[$k] = $v; $this->primVexs[$k] = $key; } } } return $this->primVexs; } //一般算法,生成最小生成樹 public function bst(){ $this->primVexs = array($this->vexs[0]); $this->primArc = array(); next($this->arc[key($this->arc)]); $key = NULL; $current = NULL; while(count($this->primVexs) < count($this->vexs)){ foreach($this->primVexs as $value){ foreach($this->arc[$value] as $k=>$v){ if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){ if($key == NULL || $v < current($current)){ $key = $k; $current = array($value . $k=>$v); } } } } $this->primVexs[] = $key; $this->primArc[key($current)] = current($current); $key = NULL; $current = NULL; } return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc); } //一般遍歷 public function reserve(){ $this->hasList = array(); foreach($this->arc as $key=>$value){ if(!in_array($key, $this->hasList)){ $this->hasList[] = $key; } foreach($value as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)){ $this->hasList[] = $k; } } } foreach($this->vexs as $v){ if(!in_array($v, $this->hasList)) $this->hasList[] = $v; } return implode($this->hasList); } //廣度優(yōu)先遍歷 public function bfs(){ $this->hasList = array(); $this->queue = array(); foreach($this->arc as $key=>$value){ if(!in_array($key, $this->hasList)){ $this->hasList[] = $key; $this->queue[] = $value; while(!empty($this->queue)){ $child = array_shift($this->queue); foreach($child as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)){ $this->hasList[] = $k; $this->queue[] = $this->arc[$k]; } } } } } return implode($this->hasList); } //執(zhí)行深度優(yōu)先遍歷 public function excuteDfs($key){ $this->hasList[] = $key; foreach($this->arc[$key] as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)) $this->excuteDfs($k); } } //深度優(yōu)先遍歷 public function dfs(){ $this->hasList = array(); foreach($this->vexs as $key){ if(!in_array($key, $this->hasList)) $this->excuteDfs($key); } return implode($this->hasList); } //返回圖的二維數(shù)組表示 public function getArc(){ return $this->arc; } //返回結(jié)點個數(shù) public function getVexCount(){ return count($this->vexs); } } $a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'); $b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//鍵為邊,值權(quán)值 $test = new MGraph($a, $b); print_r($test->bst());
運行結(jié)果:
Array ( [vexs] => Array ( [0] => a [1] => b [2] => f [3] => i [4] => c [5] => g [6] => h [7] => e [8] => d ) [arc] => Array ( [ab] => 10 [af] => 11 [bi] => 12 [ic] => 8 [bg] => 16 [gh] => 19 [he] => 7 [hd] => 16 ) )
更多關(guān)于PHP相關(guān)內(nèi)容感興趣的讀者可查看本站專題:《PHP數(shù)據(jù)結(jié)構(gòu)與算法教程》、《php程序設(shè)計算法總結(jié)》、《php字符串(string)用法總結(jié)》、《PHP數(shù)組(Array)操作技巧大全》、《PHP常用遍歷算法與技巧總結(jié)》及《PHP數(shù)學(xué)運算技巧總結(jié)》
希望本文所述對大家PHP程序設(shè)計有所幫助。
- PHP簡單實現(xiàn)二維數(shù)組的矩陣轉(zhuǎn)置操作示例
- PHP使用數(shù)組實現(xiàn)矩陣數(shù)學(xué)運算的方法示例
- PHP實現(xiàn)蛇形矩陣,回環(huán)矩陣及數(shù)字螺旋矩陣的方法分析
- PHP 數(shù)組和字符串互相轉(zhuǎn)換實現(xiàn)方法
- PHP中數(shù)組合并的兩種方法及區(qū)別介紹
- PHP遍歷數(shù)組的方法匯總
- PHP遍歷數(shù)組的幾種方法
- php數(shù)組函數(shù)序列之a(chǎn)rray_keys() - 獲取數(shù)組鍵名
- php獲取數(shù)組中重復(fù)數(shù)據(jù)的兩種方法
- PHP實現(xiàn)順時針打印矩陣(螺旋矩陣)的方法示例
相關(guān)文章
兩級聯(lián)動select刷新后其值保持不變的實現(xiàn)方法
兩級聯(lián)動select刷新后,select值保持不變即點擊提交按鈕后,頁面select中繼續(xù)維持提交前的值,下面有個不錯的示例,大家可以參考下2014-01-01php使用fputcsv()函數(shù)csv文件讀寫數(shù)據(jù)的方法
這篇文章主要介紹了php使用fputcsv()函數(shù)csv文件讀寫數(shù)據(jù)的方法,分析了fputcsv()函數(shù)針對csv文件的讀寫操作技巧,具有一定參考借鑒價值,需要的朋友可以參考下2015-01-01PHP常用工具函數(shù)小結(jié)【移除XSS攻擊、UTF8與GBK編碼轉(zhuǎn)換等】
這篇文章主要介紹了PHP常用工具函數(shù),結(jié)合實例形式總結(jié)分析了php移除XSS攻擊、以及php操作UTF8與GBK編碼轉(zhuǎn)換等相關(guān)操作自定義函數(shù)實現(xiàn)方法,需要的朋友可以參考下2019-04-04PHP基于ffmpeg實現(xiàn)轉(zhuǎn)換視頻,截圖及生成縮略圖的方法
這篇文章主要介紹了PHP基于ffmpeg實現(xiàn)轉(zhuǎn)換視頻,截圖及生成縮略圖的方法,涉及php使用ffmpeg針對視頻文件的截圖、生成縮略圖等相關(guān)操作技巧,需要的朋友可以參考下2017-08-08windows中PHP5.2.14以及apache2.2.16安裝配置方法
windows中PHP5.2.14以及apache2.2.16安裝配置,需要配置php運行環(huán)境的朋友可以參考下。2010-09-09