Java編程實(shí)現(xiàn)高斯模糊和圖像的空間卷積詳解
高斯模糊
高斯模糊(英語:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等圖像處理軟件中廣泛使用的處理效果,通常用它來減少圖像雜訊以及降低細(xì)節(jié)層次。這種模糊技術(shù)生成的圖像,其視覺效果就像是經(jīng)過一個半透明屏幕在觀察圖像,這與鏡頭焦外成像效果散景以及普通照明陰影中的效果都明顯不同。高斯平滑也用于計算機(jī)視覺算法中的預(yù)先處理階段,以增強(qiáng)圖像在不同比例大小下的圖像效果。 從數(shù)學(xué)的角度來看,圖像的高斯模糊過程就是圖像與正態(tài)分布做卷積。由于正態(tài)分布又叫作高斯分布,所以這項(xiàng)技術(shù)就叫作高斯模糊。圖像與圓形方框模糊做卷積將會生成更加精確的焦外成像效果。由于高斯函數(shù)的傅立葉變換是另外一個高斯函數(shù),所以高斯模糊對于圖像來說就是一個低通濾波器。
高斯模糊運(yùn)用了高斯的正態(tài)分布的密度函數(shù),計算圖像中每個像素的變換。
根據(jù)一維高斯函數(shù),可以推導(dǎo)得到二維高斯函數(shù):
其中r是模糊半徑,r^2 = x^2 + y^2,σ是正態(tài)分布的標(biāo)準(zhǔn)偏差。在二維空間中,這個公式生成的曲面的等高線是從中心開始呈正態(tài)分布的同心圓。分布不為零的像素組成的卷積矩陣與原始圖像做變換。每個像素的值都是周圍相鄰像素值的加權(quán)平均。原始像素的值有最大的高斯分布值,所以有最大的權(quán)重,相鄰像素隨著距離原始像素越來越遠(yuǎn),其權(quán)重也越來越小。這樣進(jìn)行模糊處理比其它的均衡模糊濾波器更高地保留了邊緣效果。
其實(shí),在iOS上實(shí)現(xiàn)高斯模糊是件很容易的事兒。早在iOS 5.0就有了Core Image的API,而且在CoreImage.framework庫中,提供了大量的濾鏡實(shí)現(xiàn)。
+(UIImage *)coreBlurImage:(UIImage *)image withBlurNumber:(CGFloat)blur { CIContext *context = [CIContext contextWithOptions:nil]; CIImage *inputImage= [CIImage imageWithCGImage:image.CGImage]; //設(shè)置filter CIFilter *filter = [CIFilter filterWithName:@"CIGaussianBlur"]; [filter setValue:inputImage forKey:kCIInputImageKey]; [filter setValue:@(blur) forKey: @"inputRadius"]; //模糊圖片 CIImage *result=[filter valueForKey:kCIOutputImageKey]; CGImageRef outImage=[context createCGImage:result fromRect:[result extent]]; UIImage *blurImage=[UIImage imageWithCGImage:outImage]; CGImageRelease(outImage); return blurImage; }
在Android上實(shí)現(xiàn)高斯模糊也可以使用原生的API—–RenderScript,不過需要Android的API是17以上,也就是Android 4.2版本。
/** * 使用RenderScript實(shí)現(xiàn)高斯模糊的算法 * @param bitmap * @return */ public Bitmap blur(Bitmap bitmap){ //Let's create an empty bitmap with the same size of the bitmap we want to blur Bitmap outBitmap = Bitmap.createBitmap(bitmap.getWidth(), bitmap.getHeight(), Bitmap.Config.ARGB_8888); //Instantiate a new Renderscript RenderScript rs = RenderScript.create(getApplicationContext()); //Create an Intrinsic Blur Script using the Renderscript ScriptIntrinsicBlur blurScript = ScriptIntrinsicBlur.create(rs, Element.U8_4(rs)); //Create the Allocations (in/out) with the Renderscript and the in/out bitmaps Allocation allIn = Allocation.createFromBitmap(rs, bitmap); Allocation allOut = Allocation.createFromBitmap(rs, outBitmap); //Set the radius of the blur: 0 < radius <= 25 blurScript.setRadius(20.0f); //Perform the Renderscript blurScript.setInput(allIn); blurScript.forEach(allOut); //Copy the final bitmap created by the out Allocation to the outBitmap allOut.copyTo(outBitmap); //recycle the original bitmap bitmap.recycle(); //After finishing everything, we destroy the Renderscript. rs.destroy(); return outBitmap; }
我們開發(fā)的圖像框架cv4j也提供了一個濾鏡來實(shí)現(xiàn)高斯模糊。
GaussianBlurFilter filter = new GaussianBlurFilter(); filter.setSigma(10); RxImageData.bitmap(bitmap).addFilter(filter).into(image2);
可以看出,cv4j實(shí)現(xiàn)的高斯模糊跟RenderScript實(shí)現(xiàn)的效果一致。
其中,GaussianBlurFilter的代碼如下:
public class GaussianBlurFilter implements CommonFilter { private float[] kernel; private double sigma = 2; ExecutorService mExecutor; CompletionService<Void> service; public GaussianBlurFilter() { kernel = new float[0]; } public void setSigma(double a) { this.sigma = a; } @Override public ImageProcessor filter(final ImageProcessor src){ final int width = src.getWidth(); final int height = src.getHeight(); final int size = width*height; int dims = src.getChannels(); makeGaussianKernel(sigma, 0.002, (int)Math.min(width, height)); mExecutor = TaskUtils.newFixedThreadPool("cv4j",dims); service = new ExecutorCompletionService<>(mExecutor); // save result for (int i=0; i<dims; i++) { final int temp = i; service.submit(new Callable<Void>() { public Void call() throws Exception { byte[] inPixels = src.tobyte(temp); byte[] temp = new byte[size]; blur(inPixels, temp, width, height); // H Gaussian blur(temp, inPixels, height, width); // V Gaussain return null; } } ); } for (int i = 0; i < dims; i++) { try { service.take(); } catch (InterruptedException e) { e.printStackTrace(); } } mExecutor.shutdown(); return src; } /** * <p> here is 1D Gaussian , </p> * * @param inPixels * @param outPixels * @param width * @param height */ private void blur(byte[] inPixels, byte[] outPixels, int width, int height) { int subCol = 0; int index = 0, index2 = 0; float sum = 0; int k = kernel.length-1; for (int row=0; row<height; row++) { int c = 0; index = row; for (int col=0; col<width; col++) { sum = 0; for (int m = -k; m< kernel.length; m++) { subCol = col + m; if(subCol < 0 || subCol >= width) { subCol = 0; } index2 = row * width + subCol; c = inPixels[index2] & 0xff; sum += c * kernel[Math.abs(m)]; } outPixels[index] = (byte)Tools.clamp(sum); index += height; } } } public void makeGaussianKernel(final double sigma, final double accuracy, int maxRadius) { int kRadius = (int)Math.ceil(sigma*Math.sqrt(-2*Math.log(accuracy)))+1; if (maxRadius < 50) maxRadius = 50; // too small maxRadius would result in inaccurate sum. if (kRadius > maxRadius) kRadius = maxRadius; kernel = new float[kRadius]; for (int i=0; i<kRadius; i++) // Gaussian function kernel[i] = (float)(Math.exp(-0.5*i*i/sigma/sigma)); double sum; // sum over all kernel elements for normalization if (kRadius < maxRadius) { sum = kernel[0]; for (int i=1; i<kRadius; i++) sum += 2*kernel[i]; } else sum = sigma * Math.sqrt(2*Math.PI); for (int i=0; i<kRadius; i++) { double v = (kernel[i]/sum); kernel[i] = (float)v; } return; } }
空間卷積
二維卷積在圖像處理中會經(jīng)常遇到,圖像處理中用到的大多是二維卷積的離散形式。
以下是cv4j實(shí)現(xiàn)的各種卷積效果。
cv4j 目前支持如下的空間卷積濾鏡
filter | 名稱 | 作用 |
---|---|---|
ConvolutionHVFilter | 卷積 | 模糊或者降噪 |
MinMaxFilter | 最大最小值濾波 | 去噪聲 |
SAPNoiseFilter | 椒鹽噪聲 | 增加噪聲 |
SharpFilter | 銳化 | 增強(qiáng) |
MedimaFilter | 中值濾波 | 去噪聲 |
LaplasFilter | 拉普拉斯 | 提取邊緣 |
FindEdgeFilter | 尋找邊緣 | 梯度提取 |
SobelFilter | 梯度 | 獲取x、y方向的梯度提取 |
VarianceFilter | 方差濾波 | 高通濾波 |
MaerOperatorFilter | 馬爾操作 | 高通濾波 |
USMFilter | USM | 增強(qiáng) |
cv4j 是gloomyfish和我一起開發(fā)的圖像處理庫,目前還處于早期的版本。
目前已經(jīng)實(shí)現(xiàn)的功能:
這周,我們對 cv4j 做了較大的調(diào)整,對整體架構(gòu)進(jìn)行了優(yōu)化。還加上了空間卷積功能(圖片增強(qiáng)、銳化、模糊等等)。接下來,我們會做二值圖像的分析(腐蝕、膨脹、開閉操作、輪廓提取等等)
總結(jié)
以上就是本文關(guān)于Java編程實(shí)現(xiàn)高斯模糊和圖像的空間卷積詳解的全部內(nèi)容,希望對大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站:
70行Java代碼實(shí)現(xiàn)深度神經(jīng)網(wǎng)絡(luò)算法分享
Java語言基于無向有權(quán)圖實(shí)現(xiàn)克魯斯卡爾算法代碼示例
如有不足之處,歡迎留言指出。感謝朋友們對本站的支持!
相關(guān)文章
Java SpringBoot微服務(wù)框架驗(yàn)證碼報錯問題解決方案
這篇文章主要介紹了Java SpringBoot微服務(wù)框架驗(yàn)證碼報錯問題解決方案,包括dockerfile容器操作和完整dockerfile,本文給大家介紹的非常詳細(xì),需要的朋友可以參考下2024-08-08Spring中事務(wù)管理方案和事務(wù)管理器及事務(wù)控制的API詳解
這篇文章主要介紹了Spring中事務(wù)管理方案和事務(wù)管理器及事務(wù)控制的API詳解,事務(wù)管理是指對事務(wù)進(jìn)行管理和控制,以確保事務(wù)的正確性和完整性,事務(wù)管理的作用是保證數(shù)據(jù)庫的數(shù)據(jù)操作的一致性和可靠性,需要的朋友可以參考下2023-08-08java實(shí)現(xiàn)時間與字符串之間轉(zhuǎn)換
這篇文章主要為大家詳細(xì)介紹了java實(shí)現(xiàn)時間與字符串之間轉(zhuǎn)換,具有一定的參考價值,感興趣的小伙伴們可以參考一下2017-12-12idea創(chuàng)建SpringBoot項(xiàng)目及注解配置相關(guān)應(yīng)用小結(jié)
Spring Boot是Spring社區(qū)發(fā)布的一個開源項(xiàng)目,旨在幫助開發(fā)者快速并且更簡單的構(gòu)建項(xiàng)目,Spring Boot框架,其功能非常簡單,便是幫助我們實(shí)現(xiàn)自動配置,本文給大家介紹idea創(chuàng)建SpringBoot項(xiàng)目及注解配置相關(guān)應(yīng)用,感興趣的朋友跟隨小編一起看看吧2023-11-11SpringBoot實(shí)現(xiàn)redis緩存菜單列表
本文主要介紹了SpringBoot實(shí)現(xiàn)redis緩存菜單列表,文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2022-01-01Java基于Google zxing生成帶logo的二維碼圖片
zxing是一個開放源碼的,用java實(shí)現(xiàn)的多種格式的1D/2D條碼圖像處理庫,本文主要介紹了Java基于Google zxing生成帶logo的二維碼圖片,具有一定的參考價值,感興趣的可以了解一下2023-10-10