opencv+arduino實(shí)現(xiàn)物體點(diǎn)追蹤效果
本文所要實(shí)現(xiàn)的結(jié)果是:通過(guò)在攝像頭中選擇一個(gè)追蹤點(diǎn),通過(guò)pc控制攝像頭的舵機(jī),使這一點(diǎn)始終在圖像的中心。
要點(diǎn):使用光流法在舵機(jī)旋轉(zhuǎn)的同時(shí)進(jìn)行追蹤,若該點(diǎn)運(yùn)動(dòng),則攝像頭跟蹤聯(lián)動(dòng)。
#include<opencv2\opencv.hpp>
#include<opencv\cv.h>
#include<opencv\highgui.h>
#include<math.h>
#include<Windows.h>
#include<string.h>
using namespace std;
using namespace cv;
#define WINDOW_NAME "【程序窗口】"
void on_MouseHandle(int event, int x, int y, int flags, void* param);
void DrawRectangle( cv::Mat& img, cv::Rect box );
void tracking(Mat &frame,vector<Point2f> temp);
HANDLE hComm;
LPCWSTR pStr=L"COM4";
char lpOutbuffer[100];
DWORD dwbyte=100;
Mat srcImage,grayImage,tempImage1,tempImage,imageROI,grayprev;
int g_maxCornerNumber = 1;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
double k = 0.04;
vector<Point2f> corners;
vector<Point2f> pre_corners;
vector<Point2f> counts;
vector<uchar> status;
vector<float> err;
Rect g_rectangle;
Rect g_temprectangle;
bool g_bDrawingBox = false;
int main( int argc, char** argv )
{
Mat frame;
Mat result;
COMSTAT Comstat;
DWORD dwError;
BOOL bWritestat;
hComm=CreateFile(pStr,GENERIC_READ | GENERIC_WRITE,0,0,OPEN_EXISTING, 0,NULL);
if (hComm == INVALID_HANDLE_VALUE)
{
cout<<"FLASE";
return -1;
}
else
{
cout<<"TURE";
}
DCB dcb;
GetCommState(hComm,&dcb);
dcb.BaudRate=9600;
dcb.ByteSize=8;
dcb.Parity=NOPARITY;
dcb.StopBits=TWOSTOPBITS;
bool set=SetCommState(hComm,&dcb);
bool sup=SetupComm(hComm,1024,1024);
VideoCapture capture(0);
namedWindow( WINDOW_NAME );
setMouseCallback(WINDOW_NAME,on_MouseHandle,(void*)&frame);
while(1)
{
capture >> frame;
if(!frame.empty())
{
cvtColor(frame,grayImage,CV_RGB2GRAY);
if( g_bDrawingBox )
rectangle(frame,g_rectangle.tl(),g_rectangle.br(),Scalar(255,255,255));
if (corners.size()!=0)
{
bool can=PurgeComm(hComm,PURGE_TXCLEAR);
if (corners[0].x>(frame.cols/2+100))
{
lpOutbuffer[0]='a';
bool ne=WriteFile(hComm,lpOutbuffer,dwbyte,&dwbyte,NULL);
}
else if (corners[0].x<(frame.cols/2-100))
{
lpOutbuffer[0]='b';
bool ne=WriteFile(hComm,lpOutbuffer,dwbyte,&dwbyte,NULL);
}
tracking(frame,corners);
rectangle(frame,Point(corners[0].x-10,corners[0].y-10),Point(corners[0].x+10,corners[0].y+10),Scalar(255,255,255));
}
imshow( WINDOW_NAME, frame );
}
else
{
printf(" --(!) No captured frame -- Break!");
break;
}
int c = waitKey(50);
if( (char)c == 27 )
{
break;
}
}
return 0;
}
void on_MouseHandle(int event, int x, int y, int flags, void* param)
{
Mat& image = *(cv::Mat*) param;
switch( event)
{
case EVENT_MOUSEMOVE:
{
if( g_bDrawingBox )
{
g_rectangle.width = x-g_rectangle.x;
g_rectangle.height = y-g_rectangle.y;
}
}
break;
case EVENT_LBUTTONDOWN:
{
g_bDrawingBox = true;
g_rectangle =Rect( x, y, 0, 0 );
}
break;
case EVENT_LBUTTONUP:
{
g_bDrawingBox = false;
if( g_rectangle.width < 0 )
{
g_rectangle.x += g_rectangle.width;
g_rectangle.width *= -1;
}
if( g_rectangle.height < 0 )
{
g_rectangle.y += g_rectangle.height;
g_rectangle.height *= -1;
}
imageROI=grayImage(g_rectangle);
goodFeaturesToTrack( imageROI,corners,g_maxCornerNumber,qualityLevel,minDistance,Mat(),blockSize,false,k );
for (int i = 0; i < corners.size(); i++)
{
corners[i].x=corners[i].x+g_rectangle.x;
corners[i].y=corners[i].y+g_rectangle.y;
}
}
break;
}
}
void tracking(Mat &frame,vector<Point2f> temp)
{
cvtColor(frame, tempImage1, COLOR_BGR2GRAY);
if (grayprev.empty())
{
tempImage1.copyTo(grayprev);
}
calcOpticalFlowPyrLK(grayprev, tempImage1, temp, pre_corners, status, err);
for (size_t i=0; i<pre_corners.size(); i++)
{
line(frame, temp[i], pre_corners[i], Scalar(0, 0, 255));
circle(frame, pre_corners[i], 4, Scalar(0, 255, 0), -1,8,0);
}
swap(pre_corners, corners);
swap(grayprev, tempImage1);
}
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- Opencv光流運(yùn)動(dòng)物體追蹤詳解
- opencv3/C++實(shí)現(xiàn)光流點(diǎn)追蹤
- python+opencv實(shí)現(xiàn)動(dòng)態(tài)物體追蹤
- 使用OpenCV實(shí)現(xiàn)檢測(cè)和追蹤車輛
- 如何用OpenCV -python3實(shí)現(xiàn)視頻物體追蹤
- Python+OpenCV實(shí)現(xiàn)實(shí)時(shí)眼動(dòng)追蹤的示例代碼
- OpenCV3.0+Python3.6實(shí)現(xiàn)特定顏色的物體追蹤
- 淺析Python+OpenCV使用攝像頭追蹤人臉面部血液變化實(shí)現(xiàn)脈搏評(píng)估
- OpenCV 顏色追蹤的示例代碼
- 圖文詳解OpenCV中光流以及視頻特征點(diǎn)追蹤
相關(guān)文章
C語(yǔ)言實(shí)現(xiàn)手寫紅黑樹(shù)的示例代碼
紅黑樹(shù)在表意上就是一棵每個(gè)節(jié)點(diǎn)帶有顏色的二叉搜索樹(shù),并通過(guò)對(duì)節(jié)點(diǎn)顏色的控制,使該二叉搜索樹(shù)達(dá)到盡量平衡的狀態(tài)。本文主將用C語(yǔ)言實(shí)現(xiàn)手寫紅黑樹(shù),需要的可以參考一下2022-09-09
C語(yǔ)言數(shù)組實(shí)現(xiàn)打磚塊游戲
這篇文章主要為大家詳細(xì)介紹了C語(yǔ)言數(shù)組實(shí)現(xiàn)打磚塊游戲,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-05-05
如何通過(guò)C++在Bing搜索引擎上進(jìn)行命令行搜索
這篇文章主要介紹了通過(guò)C++在Bing搜索引擎上進(jìn)行命令行搜索,在這篇文章中,我們將介紹一個(gè)簡(jiǎn)單的C++程序,允許用戶通過(guò)命令行輸入搜索詞,在Bing搜索引擎上執(zhí)行搜索,并在默認(rèn)瀏覽器中顯示搜索結(jié)果,需要的朋友可以參考下2023-12-12
C++如何計(jì)算結(jié)構(gòu)體與對(duì)象的大小
這篇文章主要給大家介紹了關(guān)于C++如何計(jì)算結(jié)構(gòu)體與對(duì)象大小的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2021-05-05
C++中sort()函數(shù)和priority_queue容器中比較函數(shù)的區(qū)別詳析
C++中sort()和priority_queue都能自定義比較函數(shù),其中sort()自定義的比較函數(shù)比較好理解,priority_queue中自定義的比較函數(shù)的效果和sort()是相反的,這篇文章主要給大家介紹了關(guān)于C++中sort()函數(shù)和priority_queue容器中比較函數(shù)的區(qū)別的相關(guān)資料,需要的朋友可以參考下2023-03-03
c語(yǔ)言函數(shù)棧幀的創(chuàng)建和銷毀過(guò)程詳解
我們知道c語(yǔ)言中函數(shù)都是被調(diào)用的,main函數(shù)里面能調(diào)用其他函數(shù),其實(shí)main函數(shù)也是被別的函數(shù)調(diào)用的,下面通過(guò)本文給大家分享c語(yǔ)言函數(shù)棧幀的創(chuàng)建和銷毀過(guò)程,一起看看吧2021-08-08

