淺談Android ANR在線監(jiān)控原理
Android中的Watchdog
- 在Android中,Watchdog是用來監(jiān)測關(guān)鍵服務(wù)是否發(fā)生了死鎖,如果發(fā)生了死鎖就kill進程,重啟SystemServer
- Android的Watchdog是在SystemServer中進行初始化的,所以Watchdog是運行在SystemServer進程中
- Watchdog是運行一個單獨的線程中的,每次wait 30s之后就會發(fā)起一個監(jiān)測行為,如果系統(tǒng)休眠了,那Watchdog的wait行為也會休眠,此時需要等待系統(tǒng)喚醒之后才會重新恢復(fù)監(jiān)測
- 想要被Watchdog監(jiān)測的對象需要實現(xiàn)Watchdog.Monitor接口的monitor()方法,然后調(diào)用addMonitor()方法
- 其實framework里面的Watchdog實現(xiàn)除了能監(jiān)控線程死鎖以外還能夠監(jiān)控線程卡頓,addMonitor()方法是監(jiān)控線程死鎖的,而addThread()方法是監(jiān)控線程卡頓的
Watchdog線程死鎖監(jiān)控實現(xiàn)
Watchdog監(jiān)控線程死鎖需要被監(jiān)控的對象實現(xiàn)Watchdog.Monitor接口的monitor()方法,然后再調(diào)用addMonitor()方法,例如ActivityManagerService:
public final class ActivityManagerService extends ActivityManagerNative
implements Watchdog.Monitor, BatteryStatsImpl.BatteryCallback {
public ActivityManagerService(Context systemContext) {
Watchdog.getInstance().addMonitor(this);
}
public void monitor() {
synchronized (this) { }
}
// ...
}
如上是從ActivityManagerService提取出來關(guān)于Watchdog監(jiān)控ActivityManagerService這個對象鎖的相關(guān)代碼,而監(jiān)控的實現(xiàn)如下,Watchdog是一個線程對象,start這個線程之后就會每次wait 30s后檢查一次,如此不斷的循環(huán)檢查:
public void addMonitor(Monitor monitor) {
synchronized (this) {
if (isAlive()) {
throw new RuntimeException("Monitors can't be added once the Watchdog is running");
}
mMonitorChecker.addMonitor(monitor);
}
}
@Override
public void run() {
boolean waitedHalf = false;
while (true) {
final ArrayList<HandlerChecker> blockedCheckers;
final String subject;
final boolean allowRestart;
int debuggerWasConnected = 0;
synchronized (this) {
long timeout = CHECK_INTERVAL;
// Make sure we (re)spin the checkers that have become idle within
// this wait-and-check interval
for (int i=0; i<mHandlerCheckers.size(); i++) {
HandlerChecker hc = mHandlerCheckers.get(i);
hc.scheduleCheckLocked();
}
if (debuggerWasConnected > 0) {
debuggerWasConnected--;
}
// NOTE: We use uptimeMillis() here because we do not want to increment the time we
// wait while asleep. If the device is asleep then the thing that we are waiting
// to timeout on is asleep as well and won't have a chance to run, causing a false
// positive on when to kill things.
long start = SystemClock.uptimeMillis();
while (timeout > 0) {
if (Debug.isDebuggerConnected()) {
debuggerWasConnected = 2;
}
try {
wait(timeout);
} catch (InterruptedException e) {
Log.wtf(TAG, e);
}
if (Debug.isDebuggerConnected()) {
debuggerWasConnected = 2;
}
timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
}
final int waitState = evaluateCheckerCompletionLocked();
if (waitState == COMPLETED) {
// The monitors have returned; reset
waitedHalf = false;
continue;
} else if (waitState == WAITING) {
// still waiting but within their configured intervals; back off and recheck
continue;
} else if (waitState == WAITED_HALF) {
if (!waitedHalf) {
// We've waited half the deadlock-detection interval. Pull a stack
// trace and wait another half.
ArrayList<Integer> pids = new ArrayList<Integer>();
pids.add(Process.myPid());
ActivityManagerService.dumpStackTraces(true, pids, null, null,
NATIVE_STACKS_OF_INTEREST);
waitedHalf = true;
}
continue;
}
// something is overdue!
blockedCheckers = getBlockedCheckersLocked();
subject = describeCheckersLocked(blockedCheckers);
allowRestart = mAllowRestart;
}
// If we got here, that means that the system is most likely hung.
// First collect stack traces from all threads of the system process.
// Then kill this process so that the system will restart.
EventLog.writeEvent(EventLogTags.WATCHDOG, subject);
ArrayList<Integer> pids = new ArrayList<Integer>();
pids.add(Process.myPid());
if (mPhonePid > 0) pids.add(mPhonePid);
// Pass !waitedHalf so that just in case we somehow wind up here without having
// dumped the halfway stacks, we properly re-initialize the trace file.
final File stack = ActivityManagerService.dumpStackTraces(
!waitedHalf, pids, null, null, NATIVE_STACKS_OF_INTEREST);
// Give some extra time to make sure the stack traces get written.
// The system's been hanging for a minute, another second or two won't hurt much.
SystemClock.sleep(2000);
// Pull our own kernel thread stacks as well if we're configured for that
if (RECORD_KERNEL_THREADS) {
dumpKernelStackTraces();
}
String tracesPath = SystemProperties.get("dalvik.vm.stack-trace-file", null);
String traceFileNameAmendment = "_SystemServer_WDT" + mTraceDateFormat.format(new Date());
if (tracesPath != null && tracesPath.length() != 0) {
File traceRenameFile = new File(tracesPath);
String newTracesPath;
int lpos = tracesPath.lastIndexOf (".");
if (-1 != lpos)
newTracesPath = tracesPath.substring (0, lpos) + traceFileNameAmendment + tracesPath.substring (lpos);
else
newTracesPath = tracesPath + traceFileNameAmendment;
traceRenameFile.renameTo(new File(newTracesPath));
tracesPath = newTracesPath;
}
final File newFd = new File(tracesPath);
// Try to add the error to the dropbox, but assuming that the ActivityManager
// itself may be deadlocked. (which has happened, causing this statement to
// deadlock and the watchdog as a whole to be ineffective)
Thread dropboxThread = new Thread("watchdogWriteToDropbox") {
public void run() {
mActivity.addErrorToDropBox(
"watchdog", null, "system_server", null, null,
subject, null, newFd, null);
}
};
dropboxThread.start();
try {
dropboxThread.join(2000); // wait up to 2 seconds for it to return.
} catch (InterruptedException ignored) {}
// At times, when user space watchdog traces don't give an indication on
// which component held a lock, because of which other threads are blocked,
// (thereby causing Watchdog), crash the device to analyze RAM dumps
boolean crashOnWatchdog = SystemProperties
.getBoolean("persist.sys.crashOnWatchdog", false);
if (crashOnWatchdog) {
// Trigger the kernel to dump all blocked threads, and backtraces
// on all CPUs to the kernel log
Slog.e(TAG, "Triggering SysRq for system_server watchdog");
doSysRq('w');
doSysRq('l');
// wait until the above blocked threads be dumped into kernel log
SystemClock.sleep(3000);
// now try to crash the target
doSysRq('c');
}
IActivityController controller;
synchronized (this) {
controller = mController;
}
if (controller != null) {
Slog.i(TAG, "Reporting stuck state to activity controller");
try {
Binder.setDumpDisabled("Service dumps disabled due to hung system process.");
// 1 = keep waiting, -1 = kill system
int res = controller.systemNotResponding(subject);
if (res >= 0) {
Slog.i(TAG, "Activity controller requested to coninue to wait");
waitedHalf = false;
continue;
}
} catch (RemoteException e) {
}
}
// Only kill the process if the debugger is not attached.
if (Debug.isDebuggerConnected()) {
debuggerWasConnected = 2;
}
if (debuggerWasConnected >= 2) {
Slog.w(TAG, "Debugger connected: Watchdog is *not* killing the system process");
} else if (debuggerWasConnected > 0) {
Slog.w(TAG, "Debugger was connected: Watchdog is *not* killing the system process");
} else if (!allowRestart) {
Slog.w(TAG, "Restart not allowed: Watchdog is *not* killing the system process");
} else {
Slog.w(TAG, "*** WATCHDOG KILLING SYSTEM PROCESS: " + subject);
for (int i=0; i<blockedCheckers.size(); i++) {
Slog.w(TAG, blockedCheckers.get(i).getName() + " stack trace:");
StackTraceElement[] stackTrace
= blockedCheckers.get(i).getThread().getStackTrace();
for (StackTraceElement element: stackTrace) {
Slog.w(TAG, " at " + element);
}
}
Slog.w(TAG, "*** GOODBYE!");
Process.killProcess(Process.myPid());
System.exit(10);
}
waitedHalf = false;
}
}
首先,ActivityManagerService調(diào)用addMonitor()方法把自己添加到了Watchdog的mMonitorChecker對象中,這是Watchdog的一個全局變量,這個全部變量在Watchdog的構(gòu)造方法中已經(jīng)事先初始化好并添加到mHandlerCheckers:ArrayList<HandlerChecker>這個監(jiān)控對象列表中了,mMonitorChecker是一個HandlerChecker類的實例對象,代碼如下:
public final class HandlerChecker implements Runnable {
private final Handler mHandler;
private final String mName;
private final long mWaitMax;
private final ArrayList<Monitor> mMonitors = new ArrayList<Monitor>();
private boolean mCompleted;
private Monitor mCurrentMonitor;
private long mStartTime;
HandlerChecker(Handler handler, String name, long waitMaxMillis) {
mHandler = handler;
mName = name;
mWaitMax = waitMaxMillis;
mCompleted = true;
}
public void addMonitor(Monitor monitor) {
mMonitors.add(monitor);
}
public void scheduleCheckLocked() {
if (mMonitors.size() == 0 && mHandler.getLooper().getQueue().isPolling()) {
// If the target looper has recently been polling, then
// there is no reason to enqueue our checker on it since that
// is as good as it not being deadlocked. This avoid having
// to do a context switch to check the thread. Note that we
// only do this if mCheckReboot is false and we have no
// monitors, since those would need to be executed at this point.
mCompleted = true;
return;
}
if (!mCompleted) {
// we already have a check in flight, so no need
return;
}
mCompleted = false;
mCurrentMonitor = null;
mStartTime = SystemClock.uptimeMillis();
mHandler.postAtFrontOfQueue(this);
}
public boolean isOverdueLocked() {
return (!mCompleted) && (SystemClock.uptimeMillis() > mStartTime + mWaitMax);
}
public int getCompletionStateLocked() {
if (mCompleted) {
return COMPLETED;
} else {
long latency = SystemClock.uptimeMillis() - mStartTime;
if (latency < mWaitMax/2) {
return WAITING;
} else if (latency < mWaitMax) {
return WAITED_HALF;
}
}
return OVERDUE;
}
public Thread getThread() {
return mHandler.getLooper().getThread();
}
public String getName() {
return mName;
}
public String describeBlockedStateLocked() {
if (mCurrentMonitor == null) {
return "Blocked in handler on " + mName + " (" + getThread().getName() + ")";
} else {
return "Blocked in monitor " + mCurrentMonitor.getClass().getName()
+ " on " + mName + " (" + getThread().getName() + ")";
}
}
@Override
public void run() {
final int size = mMonitors.size();
for (int i = 0 ; i < size ; i++) {
synchronized (Watchdog.this) {
mCurrentMonitor = mMonitors.get(i);
}
mCurrentMonitor.monitor();
}
synchronized (Watchdog.this) {
mCompleted = true;
mCurrentMonitor = null;
}
}
}
HandlerChecker類中的mMonitors也是監(jiān)控對象列表,這里是監(jiān)控所有實現(xiàn)了Watchdog.Monitor接口的監(jiān)控對象,而那些沒有實現(xiàn)Watchdog.Monitor接口的對象則會單獨創(chuàng)建一個HandlerChecker類并add到Watchdog的mHandlerCheckers監(jiān)控列表中,當Watchdog線程開始健康那個的時候就回去遍歷mHandlerCheckers列表,并逐一的調(diào)用HandlerChecker的scheduleCheckLocked方法:
public void scheduleCheckLocked() {
if (mMonitors.size() == 0 && mHandler.getLooper().getQueue().isPolling()) {
// If the target looper has recently been polling, then
// there is no reason to enqueue our checker on it since that
// is as good as it not being deadlocked. This avoid having
// to do a context switch to check the thread. Note that we
// only do this if mCheckReboot is false and we have no
// monitors, since those would need to be executed at this point.
mCompleted = true;
return;
}
if (!mCompleted) {
// we already have a check in flight, so no need
return;
}
mCompleted = false;
mCurrentMonitor = null;
mStartTime = SystemClock.uptimeMillis();
mHandler.postAtFrontOfQueue(this);
}
HandlerChecker這個類中有幾個比較重要的標志,一個是mCompleted,標識著本次監(jiān)控掃描是否在指定時間內(nèi)完成,mStartTime標識本次開始掃描的時間mHandler,則是被監(jiān)控的線程的handler,scheduleCheckLocked是開啟本次對與改線程的監(jiān)控,里面理所當然的會把mCompleted置為false并設(shè)置開始時間,可以看到,監(jiān)控原理就是向被監(jiān)控的線程的Handler的消息隊列中post一個任務(wù),也就是HandlerChecker本身,然后HandlerChecker這個任務(wù)就會在被監(jiān)控的線程對應(yīng)Handler維護的消息隊列中被執(zhí)行,如果消息隊列因為某一個任務(wù)卡住,那么HandlerChecker這個任務(wù)就無法及時的執(zhí)行到,超過了指定的時間后就會被認為當前被監(jiān)控的這個線程發(fā)生了卡死(死鎖造成的卡死或者執(zhí)行耗時任務(wù)造成的卡死),在HandlerChecker這個任務(wù)中:
@Override
public void run() {
final int size = mMonitors.size();
for (int i = 0 ; i < size ; i++) {
synchronized (Watchdog.this) {
mCurrentMonitor = mMonitors.get(i);
}
mCurrentMonitor.monitor();
}
synchronized (Watchdog.this) {
mCompleted = true;
mCurrentMonitor = null;
}
}
首先遍歷mMonitors列表中的監(jiān)控對象并調(diào)用monitor()方法來開啟監(jiān)控,通常在被監(jiān)控對象實現(xiàn)的monitor()方法都是按照如下實現(xiàn)的:
public void monitor() {
synchronized (this) { }
}
即監(jiān)控某一個死鎖,然后就是本次監(jiān)控完成,mCompleted設(shè)置為true,而當所有的scheduleCheckLocked都執(zhí)行完了之后,Watchdog就開始wait,而且一定要wait for 30s,這里有一個實現(xiàn)細節(jié):
long start = SystemClock.uptimeMillis();
while (timeout > 0) {
if (Debug.isDebuggerConnected()) {
debuggerWasConnected = 2;
}
try {
wait(timeout);
} catch (InterruptedException e) {
Log.wtf(TAG, e);
}
if (Debug.isDebuggerConnected()) {
debuggerWasConnected = 2;
}
timeout = CHECK_INTERVAL - (SystemClock.uptimeMillis() - start);
}
原先,我看到這段代碼的時候,首先關(guān)注到SystemClock.uptimeMillis()在設(shè)備休眠的時候是不計時的,因此猜測會不會是因為設(shè)備休眠了,wait也停止了,Watchdog在wait到15s的時候設(shè)備休眠了,并且連續(xù)休眠30分鐘后才又被喚醒,那么這時候wait會不會馬上被喚醒,答案是:正常情況下wait會繼續(xù),知道直到剩下的15s也wait完成后才會喚醒,所以我疑惑了,于是查看下下Thread的wait()方法的接口文檔,終于找到如下解釋:
A thread can also wake up without being notified, interrupted, or
* timing out, a so-called <i>spurious wakeup</i>. While this will rarely
* occur in practice, applications must guard against it by testing for
* the condition that should have caused the thread to be awakened, and
* continuing to wait if the condition is not satisfied. In other words,
* waits should always occur in loops, like this one:
* <pre>
* synchronized (obj) {
* while (<condition does not hold>)
* obj.wait(timeout);
* ... // Perform action appropriate to condition
* }
* </pre>
大致意思是說當Thread在wait的時候除了會被主動喚醒(notify或者notifyAll),中斷(interrupt),或者wait的時間到期而喚醒,還有可能被假喚醒,而這種假喚醒在實踐中發(fā)生的幾率非常低,不過針對這種假喚醒,程序需要通過驗證喚醒條件來區(qū)分線程是真的喚醒還是假的喚醒,如果是假的喚醒那么就繼續(xù)wait直到真喚醒,事實上,在我們實際的開發(fā)過程中確實要注意這種微小的細節(jié),可能99%的情況下不會發(fā)生,但是要是遇到1%的情況發(fā)生之后,那么這個問題將會是非常隱晦的,而且在查找問題的時候也會變得很困難,很奇怪,為什么線程好好的wait過程中突然被喚醒了呢,甚至可能懷疑我們以前對于線程wait在設(shè)備休眠狀態(tài)下的執(zhí)行情況?,廢話就扯到這里,繼續(xù)來研究Watchdog機制,在Watchdog等待30s之后會調(diào)用evaluateCheckerCompletionLocked()方法來檢測被監(jiān)控對象的運行情況:
private int evaluateCheckerCompletionLocked() {
int state = COMPLETED;
for (int i=0; i<mHandlerCheckers.size(); i++) {
HandlerChecker hc = mHandlerCheckers.get(i);
state = Math.max(state, hc.getCompletionStateLocked());
}
return state;
}
通過調(diào)用HandlerChecker的getCompletionStateLocked來獲取每一個HandlerChecker的監(jiān)控狀態(tài):
public int getCompletionStateLocked() {
if (mCompleted) {
return COMPLETED;
} else {
long latency = SystemClock.uptimeMillis() - mStartTime;
if (latency < mWaitMax/2) {
return WAITING;
} else if (latency < mWaitMax) {
return WAITED_HALF;
}
}
return OVERDUE;
}
從這里,我們就看到了其實是通過mCompleted這個標志來區(qū)分30s之前和30s之后的不通狀態(tài),因為30s之前對被監(jiān)控的線程對應(yīng)的Handler的消息對了中post了一個HandlerChecker任務(wù),然后mCompleted = false,等待了30s后,如果HandlerChecker被及時的執(zhí)行了,那么mCompleted = true表示任務(wù)及時執(zhí)行完畢,而如果發(fā)現(xiàn)mCompleted = false那就說明HandlerChecker依然未被執(zhí)行,當mCompleted = false的時候,會繼續(xù)檢測HandlerChecker任務(wù)的執(zhí)行時間,如果在喚醒狀態(tài)下的執(zhí)行時間小于30秒,那重新post監(jiān)控等待,如果在30秒到60秒之間,那就會dump出一些堆棧信息,然后重新post監(jiān)控等待,當?shù)却龝r間已經(jīng)超過60秒了,那就認為這是異常情況了(要么死鎖,要么耗時任務(wù)太久),這時候就會搜集各種相關(guān)信息,例如代碼堆棧信息,kernel信息,cpu信息等,生成trace文件,保存相關(guān)信息到dropbox文件夾下,然后殺死該進程,到這里監(jiān)控就結(jié)束了
Watchdog線程卡頓監(jiān)控實現(xiàn)
之前我們提到Watchdog監(jiān)控的實現(xiàn)是通過post一個HandlerChecker到線程對應(yīng)的Handler對的消息對了中的,而死鎖的監(jiān)控對象都是保存在HandlerChecker的mMonitors列表中的,所以外部調(diào)用addMonitor()方法,最終都會add到Watchdog的全局變量mMonitorChecker中的監(jiān)控列表,一次所有線程的死鎖監(jiān)控都由mMonitorChecker來負責實現(xiàn),那么對于線程耗時任務(wù)的監(jiān)控,Watchdog是通過addThread()方法來實現(xiàn)的:
public void addThread(Handler thread) {
addThread(thread, DEFAULT_TIMEOUT);
}
public void addThread(Handler thread, long timeoutMillis) {
synchronized (this) {
if (isAlive()) {
throw new RuntimeException("Threads can't be added once the Watchdog is running");
}
final String name = thread.getLooper().getThread().getName();
mHandlerCheckers.add(new HandlerChecker(thread, name, timeoutMillis));
}
}
addThread()方法實際上是創(chuàng)建了一個新的HandlerChecker對象,通過該對象來實現(xiàn)耗時任務(wù)的監(jiān)控,而該HandlerChecker對象的mMonitors列表實際上是空的,因此在執(zhí)行任務(wù)的時候并不會執(zhí)行monitor()方法了,而是直接設(shè)置mCompleted標志位,所以可以這么解釋:Watchdog監(jiān)控者是HandlerChecker,而HandlerChecker實現(xiàn)了線程死鎖監(jiān)控和耗時任務(wù)監(jiān)控,當有Monitor對象的時候就會同時監(jiān)控線程死鎖和耗時任務(wù),而沒有Monitor的時候就只是監(jiān)控線程的耗時任務(wù)造成的卡頓
Watchdog監(jiān)控流程
理解了Watchdog的監(jiān)控流程,我們可以考慮是否把Watchdog機制運用到我們實際的項目中去實現(xiàn)監(jiān)控在多線程場景中重要線程的死鎖,以及實時監(jiān)控主線程的anr的發(fā)生?當然是可以的,事實上,Watchdog的在framework中的重要作用就是監(jiān)控主要的系統(tǒng)服務(wù)器是否發(fā)生死鎖或者發(fā)生卡頓,例如監(jiān)控ActivityManagerService,如果發(fā)生異常情況,那么Watchdog將會殺死進程重啟,這樣可以保證重要的系統(tǒng)服務(wù)遇到類似問題的時候可以通過重啟來恢復(fù),Watchdog實際上相當于一個最后的保障,及時的dump出異常信息,異?;謴?fù)進程運行環(huán)境
對于應(yīng)用程序中,健康那個重要線程的死鎖問題實現(xiàn)原理可以和Watchdog保持一致
對于監(jiān)控應(yīng)用的anr卡頓的實現(xiàn)原理可以從Watchdog中借鑒,具體實現(xiàn)稍微有點不一樣,Activity是5秒發(fā)生anr,Broadcast是10秒,Service是20秒,但是實際四大組件都是運行在主線程中的,所以可以用像Watchdog一樣,wait 30秒發(fā)起一次監(jiān)控,通過設(shè)置mCompleted標志位來檢測post到MessageQueue的任務(wù)是否被卡住并未及時的執(zhí)行,通過mStartTime來計算出任務(wù)的執(zhí)行時間,然后通過任務(wù)執(zhí)行的時間來檢測MessageQueue中其他的任務(wù)執(zhí)行是否存在耗時操作,如果發(fā)現(xiàn)執(zhí)行時間超過5秒,那么可以說明消息隊列中存在耗時任務(wù),這時候可能就有anr的風險,應(yīng)該及時dump線程棧信息保存,然后通過大數(shù)據(jù)上報后臺分析,記住這里一定是計算設(shè)備活躍的狀態(tài)下的時間,如果是設(shè)備休眠,MessageQueue本來就會暫停運行,這時候其實并不是死鎖或者卡頓
WatchDog機制的anr在線監(jiān)控實現(xiàn)與demo
https://github.com/liuhongda/anrmonitor/tree/master/anrmonitor
Watchdog機制總結(jié)
每一個線程都可以對應(yīng)一個Looper,一個Looper對應(yīng)一個MessageQueue,所以可以通過向MessageQueue中post檢測任務(wù)來預(yù)測該檢測任務(wù)是否被及時的執(zhí)行,以此達到檢測線程任務(wù)卡頓的效果,但是前提是該線程要先創(chuàng)建一個Looper
Watchdog必須獨自運行在一個單獨的線程中,這樣才可以監(jiān)控其他線程而不互相影響
使用Watchdog機制來實現(xiàn)在線的anr監(jiān)控可能并不能百分百準確,比如5秒發(fā)生anr,在快到5秒的臨界值的時候耗時任務(wù)正好執(zhí)行完成了,這時候執(zhí)行anr檢測任務(wù),在檢測任務(wù)執(zhí)行過程中,有可能Watchdog線程wait的時間也到了,這時候發(fā)現(xiàn)檢測任務(wù)還沒執(zhí)行完于是就報了一個anr,這是不準確的;另一種情況可能是5秒anr已經(jīng)發(fā)生了,但是Watchdog線程檢測還沒還是wait,也就是anr發(fā)生的時間和Watchdog線程wait的時間錯開了,等到下一次Watchdog線程開始wait的時候,anr已經(jīng)發(fā)生完了,主線程可能已經(jīng)恢復(fù)正常,這時候就會漏掉這次發(fā)生的anr信息搜集,所以當anr卡頓的時間是Watchdog線程wait時間的兩倍的時候,才能完整的掃描到anr并記錄,也就是說Watchdog的wait時間為2.5秒,這個在實際應(yīng)用中有點過于頻繁了,如果設(shè)備不休眠,Watchdog相當于每間隔2.5秒就會運行一下,可能會有耗電風險
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Android GestureDetector手勢滑動使用實例講解
這篇文章主要為大家詳細介紹了Android GestureDetector手勢滑動使用實例,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2016-07-07
android 把float轉(zhuǎn)換成Int的實例講解
今天小編就為大家分享一篇android 把float轉(zhuǎn)換成Int的實例講解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-07-07
AndroidStudio重新share代碼和上傳到svn新地址教程
這篇文章主要介紹了AndroidStudio重新share代碼和上傳到svn新地址教程,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-04-04
Android中AlertDialog 點擊按鈕后不關(guān)閉對話框的功能
本篇文章主要介紹了Android中AlertDialog 點擊按鈕后不關(guān)閉對話框的功能,非常具有實用價值,需要的朋友可以參考下2017-04-04
android 仿微信demo——注冊功能實現(xiàn)(服務(wù)端)
本篇文章主要介紹了微信小程序-閱讀小程序?qū)嵗?,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧,希望能給你們提供幫助2021-06-06
Android使用NumberPicker實現(xiàn)滑輪日期選擇器
這篇文章主要為大家介紹了如何使用Android中的NumberPicker控件,以一種簡單而直觀的方式實現(xiàn)滑輪式的日期選擇器,需要的小伙伴可以參考一下2023-06-06

