MFC實(shí)現(xiàn)連連看游戲之消子算法
本文實(shí)例為大家分享了MFC實(shí)現(xiàn)連連看游戲消子算法的具體代碼,供大家參考,具體內(nèi)容如下
兩個(gè)位置的圖片能否消除,有三種情況:
1.一條直線連接,這種也是最簡單的一種消除方法
bool LinkInLine(CPoint p1, CPoint p2)
{
conner1.x = conner1.y = -1; // 記錄拐點(diǎn)位置
conner2.x = conner2.y = -1;
BOOL b = true;
if (p1.y == p2.y) // 兩個(gè)點(diǎn)再同一行
{
int min_x = min(p1.x, p2.x);
int max_x = max(p1.x, p2.x);
for (int i = min_x+1; i < max_x; i++)
{
if (game->map[i][p1.y] != 0)
{
b = false;
}
}
}
else if (p1.x == p2.x) // 在同一列
{
int min_y = min(p1.y, p2.y);
int max_y = max(p1.y, p2.y);
for (int i = min_y + 1; i < max_y; i++)
{
if (game->map[p1.x][i] != 0)
{
b = false;
}
}
}
else // 不在同一直線
{
b = false;
}
return b;
}
2.兩條直線消除,即經(jīng)過一個(gè)拐點(diǎn)。
兩個(gè)頂點(diǎn)經(jīng)過兩條直線連接有兩種情況,即兩個(gè)拐點(diǎn)分兩種情況。
bool OneCornerLink(CPoint p1, CPoint p2)
{
conner1.x = conner1.y = -1;
conner2.x = conner2.y = -1;
int min_x = min(p1.x, p2.x);
int max_x = max(p1.x, p2.x);
int min_y = min(p1.y, p2.y);
int max_y = max(p1.y, p2.y);
// 拐點(diǎn)1
int x1 = p1.x;
int y1 = p2.y;
//拐點(diǎn)2
int x2 = p2.x;
int y2 = p1.y;
BOOL b = true;
if (game->map[x1][y1] != 0 && game->map[x2][y2] != 0)
{
b = false;
}
else
{
if (game->map[x1][y1] == 0) // 拐點(diǎn)1位置無圖片
{
for (int i = min_x + 1; i < max_x; i++)
{
if (game->map[i][y1] != 0)
{
b = false;
break;
}
}
for (int i = min_y + 1; i < max_y; i++)
{
if (game->map[x1][i] != 0)
{
b = false;
break;
}
}
if (b)
{
conner1.x = x1;
conner1.y = y1;
return b;
}
}
if (game->map[x2][y2] == 0) // 拐點(diǎn)2位置無圖片
{
b = true;
for (int i = min_x + 1; i < max_x; i++)
{
if (game->map[i][y2] != 0)
{
b = false;
break;
}
}
for (int i = min_y + 1; i < max_y; i++)
{
if (game->map[x2][i] != 0)
{
b = false;
break;
}
}
if (b)
{
conner1.x = x2;
conner1.y = y2;
return b;
}
}
}
return b;
}
3.三條直線消除,即經(jīng)過兩個(gè)拐點(diǎn)。
這是可以通過橫向掃描和縱向掃描,掃描的時(shí)候可以得到連個(gè)拐點(diǎn),判斷兩個(gè)頂點(diǎn)經(jīng)過這兩個(gè)拐點(diǎn)后是否能消除
bool TwoCornerLink(CPoint p1, CPoint p2)
{
conner1.x = conner1.y = -1;
conner2.x = conner2.y = -1;
int min_x = min(p1.x, p2.x);
int max_x = max(p1.x, p2.x);
int min_y = min(p1.y, p2.y);
int max_y = max(p1.y, p2.y);
bool b;
for (int i = 0; i < MAX_Y; i++) // 掃描行
{
b = true;
if (game->map[p1.x][i] == 0 && game->map[p2.x][i] == 0) // 兩個(gè)拐點(diǎn)位置無圖片
{
for (int j = min_x + 1; j < max_x; j++) // 判斷連個(gè)拐點(diǎn)之間是否可以連接
{
if (game->map[j][i] != 0)
{
b = false;
break;
}
}
if (b)
{
int temp_max = max(p1.y, i);
int temp_min = min(p1.y, i);
for (int j = temp_min + 1; j < temp_max; j++) // 判斷p1和它所對(duì)應(yīng)的拐點(diǎn)之間是否可以連接
{
if (game->map[p1.x][j] != 0)
{
b = false;
break;
}
}
}
if (b)
{
int temp_max = max(p2.y, i);
int temp_min = min(p2.y, i);
for (int j = temp_min + 1; j < temp_max; j++) // 判斷p2和它所對(duì)應(yīng)的拐點(diǎn)之間是否可以連接
{
for (int j = temp_min + 1; j < temp_max; j++)
{
if (game->map[p2.x][j] != 0)
{
b = false;
break;
}
}
}
}
if (b) // 如果存在路線,返回true
{
conner1.x = p1.x;
conner1.y = i;
conner2.x = p2.x;
conner2.y = i;
return b;
}
}
}// 掃描行結(jié)束
for (int i = 0; i < MAX_X; i++) // 掃描列
{
b = true;
if (game->map[i][p1.y] == 0 && game->map[i][p2.y] == 0) // 連個(gè)拐點(diǎn)位置無圖片
{
for (int j = min_y + 1; j < max_y; j++) // 兩個(gè)拐點(diǎn)之間是否可以連接
{
if (game->map[i][j] != 0)
{
b = false;
break;
}
}
if (b)
{
int temp_max = max(i, p1.x);
int temp_min = min(i, p1.x);
for (int j = temp_min + 1; j < temp_max; j++) // 判斷p1和它所對(duì)應(yīng)的拐點(diǎn)之間是否可以連接
{
if (game->map[j][p1.y] != 0)
{
b = false;
break;
}
}
}
if (b)
{
int temp_max = max(p2.x, i);
int temp_min = min(p2.x, i);
for (int j = temp_min + 1; j < temp_max; j++)
{
if (game->map[j][p2.y] != 0)
{
b = false;
break;
}
}
}
if (b) // 如果存在路線,返回true
{
conner1.y = p1.y;
conner1.x = i;
conner2.y = p2.y;
conner2.x = i;
return b;
}
}
} // 掃描列結(jié)束
return b;
}
完整源碼已上傳至我的GitHub
以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
淺析string 與char* char[]之間的轉(zhuǎn)換
與char*不同的是,string不一定以NULL('\0')結(jié)束。string長度可以根據(jù)length()得到,string可以根據(jù)下標(biāo)訪問。所以,不能將string直接賦值給char*2013-10-10

