MapTask階段shuffle源碼分析
1. 收集階段
在Mapper中,調(diào)用context.write(key,value)實(shí)際是調(diào)用代理NewOutPutCollector的wirte方法
public void write(KEYOUT key, VALUEOUT value
) throws IOException, InterruptedException {
output.write(key, value);
}
實(shí)際調(diào)用的是MapOutPutBuffer的collect(),在進(jìn)行收集前,調(diào)用partitioner來(lái)計(jì)算每個(gè)key-value的分區(qū)號(hào)
@Override
public void write(K key, V value) throws IOException, InterruptedException {
collector.collect(key, value,
partitioner.getPartition(key, value, partitions));
}
2. NewOutPutCollector對(duì)象的創(chuàng)建
@SuppressWarnings("unchecked")
NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
JobConf job,
TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException, ClassNotFoundException {
// 創(chuàng)建實(shí)際用來(lái)收集key-value的緩存區(qū)對(duì)象
collector = createSortingCollector(job, reporter);
// 獲取總的分區(qū)個(gè)數(shù)
partitions = jobContext.getNumReduceTasks();
if (partitions > 1) {
partitioner = (org.apache.hadoop.mapreduce.Partitioner<K,V>)
ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);
} else {
// 默認(rèn)情況,直接創(chuàng)建一個(gè)匿名內(nèi)部類,所有的key-value都分配到0號(hào)分區(qū)
partitioner = new org.apache.hadoop.mapreduce.Partitioner<K,V>() {
@Override
public int getPartition(K key, V value, int numPartitions) {
return partitions - 1;
}
};
}
}
3. 創(chuàng)建環(huán)形緩沖區(qū)對(duì)象
@SuppressWarnings("unchecked")
private <KEY, VALUE> MapOutputCollector<KEY, VALUE>
createSortingCollector(JobConf job, TaskReporter reporter)
throws IOException, ClassNotFoundException {
MapOutputCollector.Context context =
new MapOutputCollector.Context(this, job, reporter);
// 從當(dāng)前Job的配置中,獲取mapreduce.job.map.output.collector.class,如果沒(méi)有設(shè)置,使用MapOutputBuffer.class
Class<?>[] collectorClasses = job.getClasses(
JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR, MapOutputBuffer.class);
int remainingCollectors = collectorClasses.length;
Exception lastException = null;
for (Class clazz : collectorClasses) {
try {
if (!MapOutputCollector.class.isAssignableFrom(clazz)) {
throw new IOException("Invalid output collector class: " + clazz.getName() +
" (does not implement MapOutputCollector)");
}
Class<? extends MapOutputCollector> subclazz =
clazz.asSubclass(MapOutputCollector.class);
LOG.debug("Trying map output collector class: " + subclazz.getName());
// 創(chuàng)建緩沖區(qū)對(duì)象
MapOutputCollector<KEY, VALUE> collector =
ReflectionUtils.newInstance(subclazz, job);
// 創(chuàng)建完緩沖區(qū)對(duì)象后,執(zhí)行初始化
collector.init(context);
LOG.info("Map output collector class = " + collector.getClass().getName());
return collector;
} catch (Exception e) {
String msg = "Unable to initialize MapOutputCollector " + clazz.getName();
if (--remainingCollectors > 0) {
msg += " (" + remainingCollectors + " more collector(s) to try)";
}
lastException = e;
LOG.warn(msg, e);
}
}
throw new IOException("Initialization of all the collectors failed. " +
"Error in last collector was :" + lastException.getMessage(), lastException);
}
3. MapOutPutBuffer的初始化 環(huán)形緩沖區(qū)對(duì)象
@SuppressWarnings("unchecked")
public void init(MapOutputCollector.Context context
) throws IOException, ClassNotFoundException {
job = context.getJobConf();
reporter = context.getReporter();
mapTask = context.getMapTask();
mapOutputFile = mapTask.getMapOutputFile();
sortPhase = mapTask.getSortPhase();
spilledRecordsCounter = reporter.getCounter(TaskCounter.SPILLED_RECORDS);
// 獲取分區(qū)總個(gè)數(shù),取決于ReduceTask的數(shù)量
partitions = job.getNumReduceTasks();
rfs = ((LocalFileSystem)FileSystem.getLocal(job)).getRaw();
//sanity checks
// 從當(dāng)前配置中,獲取mapreduce.map.sort.spill.percent,如果沒(méi)有設(shè)置,就是0.8
final float spillper =
job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);
// 獲取mapreduce.task.io.sort.mb,如果沒(méi)設(shè)置,就是100MB
final int sortmb = job.getInt(JobContext.IO_SORT_MB, 100);
indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
if (spillper > (float)1.0 || spillper <= (float)0.0) {
throw new IOException("Invalid \"" + JobContext.MAP_SORT_SPILL_PERCENT +
"\": " + spillper);
}
if ((sortmb & 0x7FF) != sortmb) {
throw new IOException(
"Invalid \"" + JobContext.IO_SORT_MB + "\": " + sortmb);
}
// 在溢寫前,對(duì)key-value排序,采用的排序器,使用快速排序,只排索引
sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class",
QuickSort.class, IndexedSorter.class), job);
// buffers and accounting
int maxMemUsage = sortmb << 20;
maxMemUsage -= maxMemUsage % METASIZE;
// 存放key-value
kvbuffer = new byte[maxMemUsage];
bufvoid = kvbuffer.length;
// 存儲(chǔ)key-value的屬性信息,分區(qū)號(hào),索引等
kvmeta = ByteBuffer.wrap(kvbuffer)
.order(ByteOrder.nativeOrder())
.asIntBuffer();
setEquator(0);
bufstart = bufend = bufindex = equator;
kvstart = kvend = kvindex;
maxRec = kvmeta.capacity() / NMETA;
softLimit = (int)(kvbuffer.length * spillper);
bufferRemaining = softLimit;
LOG.info(JobContext.IO_SORT_MB + ": " + sortmb);
LOG.info("soft limit at " + softLimit);
LOG.info("bufstart = " + bufstart + "; bufvoid = " + bufvoid);
LOG.info("kvstart = " + kvstart + "; length = " + maxRec);
// k/v serialization
// 獲取快速排序的Key的比較器,排序只按照key進(jìn)行排序!
comparator = job.getOutputKeyComparator();
// 獲取key-value的序列化器
keyClass = (Class<K>)job.getMapOutputKeyClass();
valClass = (Class<V>)job.getMapOutputValueClass();
serializationFactory = new SerializationFactory(job);
keySerializer = serializationFactory.getSerializer(keyClass);
keySerializer.open(bb);
valSerializer = serializationFactory.getSerializer(valClass);
valSerializer.open(bb);
// output counters
mapOutputByteCounter = reporter.getCounter(TaskCounter.MAP_OUTPUT_BYTES);
mapOutputRecordCounter =
reporter.getCounter(TaskCounter.MAP_OUTPUT_RECORDS);
fileOutputByteCounter = reporter
.getCounter(TaskCounter.MAP_OUTPUT_MATERIALIZED_BYTES);
// 溢寫到磁盤,可以使用一個(gè)壓縮格式! 獲取指定的壓縮編解碼器
// compression
if (job.getCompressMapOutput()) {
Class<? extends CompressionCodec> codecClass =
job.getMapOutputCompressorClass(DefaultCodec.class);
codec = ReflectionUtils.newInstance(codecClass, job);
} else {
codec = null;
}
// 獲取Combiner組件
// combiner
final Counters.Counter combineInputCounter =
reporter.getCounter(TaskCounter.COMBINE_INPUT_RECORDS);
combinerRunner = CombinerRunner.create(job, getTaskID(),
combineInputCounter,
reporter, null);
if (combinerRunner != null) {
final Counters.Counter combineOutputCounter =
reporter.getCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
combineCollector= new CombineOutputCollector<K,V>(combineOutputCounter, reporter, job);
} else {
combineCollector = null;
}
spillInProgress = false;
minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);
// 設(shè)置溢寫線程在后臺(tái)運(yùn)行,溢寫是在后臺(tái)運(yùn)行另外一個(gè)溢寫線程!和收集是兩個(gè)線程!
spillThread.setDaemon(true);
spillThread.setName("SpillThread");
spillLock.lock();
try {
// 啟動(dòng)線程
spillThread.start();
while (!spillThreadRunning) {
spillDone.await();
}
} catch (InterruptedException e) {
throw new IOException("Spill thread failed to initialize", e);
} finally {
spillLock.unlock();
}
if (sortSpillException != null) {
throw new IOException("Spill thread failed to initialize",
sortSpillException);
}
}
4. Paritionner的獲取
從配置中讀取mapreduce.job.partitioner.class,如果沒(méi)有指定,采用HashPartitioner.class
如果reduceTask > 1, 還沒(méi)有設(shè)置分區(qū)組件,使用HashPartitioner
@SuppressWarnings("unchecked")
public Class<? extends Partitioner<?,?>> getPartitionerClass()
throws ClassNotFoundException {
return (Class<? extends Partitioner<?,?>>)
conf.getClass(PARTITIONER_CLASS_ATTR, HashPartitioner.class);
}
public class HashPartitioner<K, V> extends Partitioner<K, V> {
/** Use {@link Object#hashCode()} to partition. **/
public int getPartition(K key, V value,
int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
分區(qū)號(hào)的限制:0 <= 分區(qū)號(hào) < 總的分區(qū)數(shù)(reduceTask的個(gè)數(shù))
if (partition < 0 || partition >= partitions) {
throw new IOException("Illegal partition for " + key + " (" +
partition + ")");
}
5.MapTask shuffle的流程
①在map()調(diào)用context.write()
②調(diào)用MapoutPutBuffer的collect()
- 調(diào)用分區(qū)組件Partitionner計(jì)算當(dāng)前這組key-value的分區(qū)號(hào)
③將當(dāng)前key-value收集到MapOutPutBuffer中
- 如果超過(guò)溢寫的閥值,在后臺(tái)啟動(dòng)溢寫線程,來(lái)進(jìn)行溢寫!
④溢寫前,先根據(jù)分區(qū)號(hào),將相同分區(qū)號(hào)的key-value,采用快速排序算法,進(jìn)行排序!
- 排序并不在內(nèi)存中移動(dòng)key-value,而是記錄排序后key-value的有序索引!
⑤ 開始溢寫,按照排序后有序的索引,將文件寫入到一個(gè)臨時(shí)的溢寫文件中
- 如果沒(méi)有定義Combiner,直接溢寫!
- 如果定義了Combiner,使用CombinerRunner.conbine()對(duì)key-value處理后再次溢寫!
⑥多次溢寫后,每次溢寫都會(huì)產(chǎn)生一個(gè)臨時(shí)文件
⑦最后,執(zhí)行一次flush(),將剩余的key-value進(jìn)行溢寫
⑧MergeParts: 將多次溢寫的結(jié)果,保存為一個(gè)總的文件!
- 在合并為一個(gè)總的文件前,會(huì)執(zhí)行歸并排序,保證合并后的文件,各個(gè)分區(qū)也是有序的!
- 如果定義了Conbiner,Conbiner會(huì)再次運(yùn)行(前提是溢寫的文件個(gè)數(shù)大于3)!
- 否則,就直接溢寫!
⑨最終保證生成一個(gè)最終的文件,這個(gè)文件根據(jù)總區(qū)號(hào),分為若干部分,每個(gè)部分的key-value都已經(jīng)排好序,等待ReduceTask來(lái)拷貝相應(yīng)分區(qū)的數(shù)據(jù)
6. Combiner
combiner其實(shí)就是Reducer類型:
Class<? extends Reducer<K,V,K,V>> cls =
(Class<? extends Reducer<K,V,K,V>>) job.getCombinerClass();
Combiner的運(yùn)行時(shí)機(jī):
MapTask:
- ①每次溢寫前,如果指定了Combiner,會(huì)運(yùn)行
- ②將多個(gè)溢寫片段,進(jìn)行合并為一個(gè)最終的文件時(shí),也會(huì)運(yùn)行Combiner,前提是片段數(shù)>=3
ReduceTask:
③reduceTask在運(yùn)行時(shí),需要啟動(dòng)shuffle進(jìn)程拷貝MapTask產(chǎn)生的數(shù)據(jù)!
- 數(shù)據(jù)在copy后,進(jìn)入shuffle工作的內(nèi)存,在內(nèi)存中進(jìn)行merge和sort!
- 數(shù)據(jù)過(guò)多,內(nèi)部不夠,將部分?jǐn)?shù)據(jù)溢寫在磁盤!
- 如果有溢寫的過(guò)程,那么combiner會(huì)再次運(yùn)行!
①一定會(huì)運(yùn)行,②,③需要條件!
總結(jié)
以上就是這篇文章的全部?jī)?nèi)容了,希望本文的內(nèi)容對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,謝謝大家對(duì)腳本之家的支持。如果你想了解更多相關(guān)內(nèi)容請(qǐng)查看下面相關(guān)鏈接
相關(guān)文章
Tomcat?8.5?+mysql?5.7+jdk1.8開發(fā)JavaSE的金牌榜小項(xiàng)目
這篇文章主要介紹了Tomcat?8.5?+mysql?5.7+jdk1.8開發(fā)JavaSE的金牌榜小項(xiàng)目,本文通過(guò)圖文實(shí)例相結(jié)合給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2022-05-05
spring?boot微服務(wù)場(chǎng)景下apollo加載過(guò)程解析
apollo?是一個(gè)開源的配置中心項(xiàng)目,功能很強(qiáng)大,apollo?本身的配置項(xiàng)并不復(fù)雜,但是因?yàn)榕渲玫穆窂教貏e多,非常容易搞混了,?所以本文試圖聚焦?spring-boot?的場(chǎng)景,在?spring-boot?微服務(wù)場(chǎng)景下,搞清楚?apollo-client的加載過(guò)程2022-02-02
IntelliJ IDEA自定義代碼提示模板Live Templates的圖文教程
這篇文章主要介紹了IntelliJ IDEA自定義代碼提示模板Live Templates,本文通過(guò)圖文并茂的形式給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-03-03
java連接SQL?Server數(shù)據(jù)庫(kù)的超詳細(xì)教程
最近在java連接SQL數(shù)據(jù)庫(kù)時(shí)會(huì)出現(xiàn)一些問(wèn)題,所以這篇文章主要給大家介紹了關(guān)于java連接SQL?Server數(shù)據(jù)庫(kù)的超詳細(xì)教程,文中通過(guò)圖文介紹的非常詳細(xì),需要的朋友可以參考下2022-06-06
基于html5+java實(shí)現(xiàn)大文件上傳實(shí)例代碼
本文通過(guò)一段實(shí)例代碼給大家介紹基于html5+java實(shí)現(xiàn)大文件上傳,涉及到html5 java 文件上傳相關(guān)知識(shí),感興趣的朋友一起學(xué)習(xí)吧2016-01-01
Spring MVC數(shù)據(jù)綁定概述及原理詳解
這篇文章主要介紹了Spring MVC數(shù)據(jù)綁定概述及原理詳解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-06-06
Java SimpleDateFormat中英文時(shí)間格式化轉(zhuǎn)換詳解
這篇文章主要為大家詳細(xì)介紹了Java SimpleDateFormat中英文時(shí)間格式化轉(zhuǎn)換,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-12-12

