Dijkstra算法最短路徑的C++實(shí)現(xiàn)與輸出路徑
某個源點(diǎn)到其余各頂點(diǎn)的最短路徑
這個算法最開始心里怕怕的,不知道為什么,花了好長時間弄懂了,也寫了一遍,又遇到時還是出錯了,今天再次寫它,心里沒那么怕了,耐心研究,懂了之后會好開心的,哈哈
Dijkstra算法:
圖G
如圖:若要求從頂點(diǎn)1到其余各頂點(diǎn)的最短路徑,該咋求;
迪杰斯特拉提出“按最短路徑長度遞增的次序”產(chǎn)生最短路徑。
首先,在所有的這些最短路徑中,長度最短的這條路徑必定只有一條弧,且它的權(quán)值是從源點(diǎn)出發(fā)的所有弧上權(quán)的最小值,例如:在圖G中,從源點(diǎn)1出發(fā)有3條弧,其中以弧(1,2)的權(quán)值為最小,因此,(1,2)不僅是1到2的一條最短路徑,并且它可能是源點(diǎn)到其它各個終點(diǎn)的最短路徑中的一條子路徑。
其次,第二條長度次短的最短路徑只可能有兩種情況:①它或者只含一條從源點(diǎn)出發(fā)的弧且弧上的權(quán)值大于已求得最短路徑的那條弧的權(quán)值,但小于其他從源點(diǎn)出發(fā)的弧上的權(quán)值②它或者是一條只經(jīng)過已求得最短路徑的頂點(diǎn)的路徑。
例如圖G中,從1到其他各點(diǎn)。過程中,用d[i]保存從1到i的的最短路徑(過程會變化),初值為:若源點(diǎn)到該源點(diǎn)有弧,則為權(quán)值,否則初始化為無窮大,每求得一條到達(dá)某個終點(diǎn)i的最短路徑,就繼續(xù)檢查是否存在以此路徑為子路徑的到達(dá)其他點(diǎn)的最短路徑,若存在,判斷其長度是否比當(dāng)前求得的路徑長度短,若短,就更新為更短的長度。
如圖G中,求得到2的最短路徑d[2]為10,就把d[2]作為與2相連的到其他點(diǎn)的子路徑繼續(xù)檢查,得到到3的最短路徑為d[2]+50=60
過程:
(1).令S={1},S集合中表示已經(jīng)找到最短路徑的結(jié)點(diǎn),開始時1為源點(diǎn),并設(shè)定d[i]的初始值為:d[i]=(1,i),
(2).求出到j(luò)點(diǎn)的最短路徑,j點(diǎn)為不在S集合中的某點(diǎn)
d[j]=min{d[i]}
(3).判斷所有沒在S集合中的頂點(diǎn)k,若d[k]>d[j]+(j,k)則修改d[k]的值為:
d[k]=d[j]+(j,k)
(4).重復(fù)(2).(3)操作共n-1次,每次操作,在(2)得到一個到
某點(diǎn)的最短路徑。
有向圖求最短路徑
#include<stdio.h> #include<string.h> #include<stdlib.h> #define max 900000000 //有向圖 int main(){ int n,m,a,b,v,i,j,min,k; scanf("%d%d",&n,&m);//輸入n個頂點(diǎn),m條邊 int g[n+1][n+1],d[n+1],vis[n+1];//g[i][j]表示i到j(luò)的邊的權(quán)值,vis[i]表示到此頂點(diǎn)的最短路是否已經(jīng)找到,d[i]當(dāng)前源點(diǎn)到i頂點(diǎn)的最短路徑 memset(vis,0,sizeof(vis)); for(i=0;i<=n;i++){ for(j=0;j<=n;j++){ g[i][j]=max; } d[i]=max; } for(i=0;i<m;i++){//i到j(luò)的邊權(quán)值儲存到g鄰接矩陣中,i點(diǎn)到j(luò)點(diǎn)無直接相連的邊時,g[i][j]=max scanf("%d%d%d",&a,&b,&v); g[a][b]=v; } for(i=2;i<=n;i++){ d[i]=g[1][i]; //初始化源點(diǎn)到i點(diǎn)邊權(quán)值,之后過程中會發(fā)生變化 } vis[1]=1; for(i=2;i<=n;i++){//共循環(huán)n-1次,每循環(huán)一次,確定一條最短路,再次循環(huán)時這條路就不用考慮了,去尋找下一條最短路 min=max; for(j=2;j<=n;j++){//尋找下一條當(dāng)前最短路 if(d[j]<min&&vis[j]==0){ min=d[j]; k=j; } } vis[k]=1;//找到了,到k點(diǎn)的路是當(dāng)前最短路,標(biāo)記它,根據(jù)它尋找下一條最短路 for(j=2;j<=n;j++){ if(d[j]>d[k]+g[k][j]&&vis[j]==0){//經(jīng)過此k點(diǎn)到達(dá)j點(diǎn)的路徑是否小于其他到達(dá)j點(diǎn)的路徑 d[j]=d[k]+g[k][j]; } } } for(i=2;i<=n;i++){//輸出到達(dá)個點(diǎn)的最短路徑 printf("%d\n",d[i]); } return 0; }
無向圖求最短路徑
無向圖也是相同思路:在構(gòu)造鄰接矩陣時考慮對稱就行。
無向圖求最短路徑且有路徑輸出
在求最短路的過程中,最短路①它或者是從源點(diǎn)出發(fā)的弧②它或者是一條經(jīng)過已到其他最短路徑的頂點(diǎn)的路徑。
建立一個新的結(jié)構(gòu)體類型path,該類型變量d表示到達(dá)某點(diǎn)的最短路徑距離 ,該類型變量pre表示該最短路徑是經(jīng)過哪個點(diǎn)傳過來的
#include<stdio.h> #include<string.h> #include<stdlib.h> #define max 900000000 typedef struct{ int d;//到達(dá)某點(diǎn)的最短路徑距離 int pre;//該最短路徑是經(jīng)過哪個點(diǎn)傳過來的,源點(diǎn)或其他某個點(diǎn) }path; //有向圖 int main(){ int n,m,a,b,v,i,j,min,k,from; scanf("%d%d",&n,&m);//輸入n個頂點(diǎn),m條邊 int g[n+1][n+1],vis[n+1];//g[i][j]表示i到j(luò)的邊的權(quán)值,vis[i]表示到此頂點(diǎn)的最短路是否已經(jīng)找到,d[i]當(dāng)前源點(diǎn)到i頂點(diǎn)的最短路徑 path to[n+1];//記錄當(dāng)前到某個點(diǎn)的最短路徑以及從哪個點(diǎn)傳過來的 memset(vis,0,sizeof(vis)); for(i=0;i<=n;i++){ for(j=0;j<=n;j++){ g[i][j]=max; } to[i].d=max; } for(i=0;i<m;i++){//i到j(luò)的邊權(quán)值儲存到g數(shù)組中,i點(diǎn)到j(luò)點(diǎn)無直接相連的邊時,g[i][j]=max scanf("%d%d%d",&a,&b,&v); g[a][b]=v; g[b][a]=v; } for(i=2;i<=n;i++){ to[i].d=g[1][i]; //初始化源點(diǎn)到i點(diǎn)邊權(quán)值,之后過程中會發(fā)生變化 if(g[1][i]!=max){ to[i].pre=1; } } vis[1]=1; for(i=2;i<=n;i++){//共循環(huán)n-1次,每循環(huán)一次,確定一條最短路,再次循環(huán)時這條路就不用考慮了,去尋找下一條最短路 min=max; for(j=2;j<=n;j++){//尋找下一條當(dāng)前最短路 if(to[j].d<min&&vis[j]==0){ min=to[j].d; k=j; } } vis[k]=1;//找到了,到k點(diǎn)的路是當(dāng)前最短路,標(biāo)記它,根據(jù)它尋找下一條最短路 for(j=2;j<=n;j++){ if(to[j].d>to[k].d+g[k][j]&&vis[j]==0){//經(jīng)過此k點(diǎn)到達(dá)j點(diǎn)的路徑是否小于其他到達(dá)j點(diǎn)的路徑 to[j].d=to[k].d+g[k][j]; to[j].pre=k;//改變j點(diǎn)是誰傳來的,現(xiàn)在到j(luò)點(diǎn)的最短路徑是經(jīng)過k點(diǎn)的,由j點(diǎn)傳來 } } } for(i=2;i<=n;i++){//輸出到達(dá)個點(diǎn)的最短路徑 printf("%d ",to[i].d); printf("%d ",i); j=i; while(j!=1){ j=to[j].pre; printf("%d ",j); } printf("\n"); } return 0; }
總結(jié)
以上就是這篇文章的全部內(nèi)容了,希望本文的內(nèi)容對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,謝謝大家對腳本之家的支持。如果你想了解更多相關(guān)內(nèi)容請查看下面相關(guān)鏈接
相關(guān)文章
深入理解goto語句的替代實(shí)現(xiàn)方式分析
本篇文章是對goto語句的替代實(shí)現(xiàn)方式進(jìn)行了詳細(xì)的分析介紹,需要的朋友參考下2013-05-05C語言中函數(shù)棧幀的創(chuàng)建和銷毀的深層分析
在C語言中,每一個正在運(yùn)行的函數(shù)都有一個棧幀與其對應(yīng),棧幀中存儲的是該函數(shù)的返回地址和局部變量。從邏輯上講,棧幀就是一個函數(shù)執(zhí)行的環(huán)境:函數(shù)參數(shù)、函數(shù)的局部變量、函數(shù)執(zhí)行完后返回到哪里等等2022-04-04c++11多種格式時間轉(zhuǎn)化為字符串的方法實(shí)現(xiàn)
本文主要介紹了c++11多種格式時間轉(zhuǎn)化為字符串的方法實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2021-11-11C++實(shí)現(xiàn)LeetCode(163.缺失區(qū)間)
這篇文章主要介紹了C++實(shí)現(xiàn)LeetCode(163.缺失區(qū)間),本篇文章通過簡要的案例,講解了該項(xiàng)技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下2021-07-07C++實(shí)現(xiàn)LeetCode(39.組合之和)
這篇文章主要介紹了C++實(shí)現(xiàn)LeetCode(39.組合之和),本篇文章通過簡要的案例,講解了該項(xiàng)技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下2021-07-07