欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

基于MATLAB神經(jīng)網(wǎng)絡圖像識別的高識別率代碼

 更新時間:2019年03月14日 10:50:04   作者:謙190  
今天小編就為大家分享一篇關于基于MATLAB神經(jīng)網(wǎng)絡圖像識別的高識別率代碼,小編覺得內(nèi)容挺不錯的,現(xiàn)在分享給大家,具有很好的參考價值,需要的朋友一起跟隨小編來看看吧

MATLAB神經(jīng)網(wǎng)絡圖像識別高識別率代碼

I0=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\0 (1).png'));
I1=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\1 (1).png'));
I2=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\2 (1).png'));
I3=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\3 (1).png'));
I4=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\4 (1).png'));
I5=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\5 (1).png'));
I6=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\6 (1).png'));
I7=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\7 (1).png'));
I8=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\8 (1).png'));
I9=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\9 (1).png'));
%以上數(shù)據(jù)都是歸一化好的數(shù)據(jù)。

P=[I0',I1',I2',I3',I4',I5',I6',I7',I8',I9'];
T=eye(10,10);
%%bp神經(jīng)網(wǎng)絡參數(shù)設置
net=newff(minmax(P),[144,200,10],{'logsig','logsig','logsig'},'trainrp');
net.inputWeights{1,1}.initFcn ='randnr';
net.layerWeights{2,1}.initFcn ='randnr';
net.trainparam.epochs=5000;
net.trainparam.show=50;
net.trainparam.lr=0.001;
net.trainparam.goal=0.0000000000001;
net=init(net);
%%%訓練樣本%%%%
[net,tr]=train(net,P,T);

PIN0=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\4 (2).png'));
PIN1=pretreatment(imread('Z:\data\PictureData\TestCode\SplitDataTest\3 (2).png'));
P0=[PIN0',PIN1'];
T0= sim(net ,PIN1')
T1 = compet (T0) 
d =find(T1 == 1) - 1
 fprintf('預測數(shù)字是:%d\n',d);
%有較高的識別率 

識別率還是挺高的。但是最大的難點問題是圖像的預處理,分割,我覺得智能算法的識別已經(jīng)做得很好了。最重要的是圖像預處理分割。

總結

以上就是這篇文章的全部內(nèi)容了,希望本文的內(nèi)容對大家的學習或者工作具有一定的參考學習價值,謝謝大家對腳本之家的支持。如果你想了解更多相關內(nèi)容請查看下面相關鏈接

相關文章

最新評論