欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

redis實(shí)現(xiàn)分布式的方法總結(jié)

 更新時(shí)間:2019年06月24日 17:21:47   投稿:laozhang  
在本篇文章中小編給大家整理了關(guān)于redis分布式怎么做的具體內(nèi)容以及知識點(diǎn)總結(jié),有興趣的朋友們參考下。

一 為什么使用 Redis

在項(xiàng)目中使用 Redis,主要考慮兩個(gè)角度:性能和并發(fā)。如果只是為了分布式鎖這些其他功能,還有其他中間件 Zookpeer 等代替,并非一定要使用 Redis。

性能:

如下圖所示,我們在碰到需要執(zhí)行耗時(shí)特別久,且結(jié)果不頻繁變動的 SQL,就特別適合將運(yùn)行結(jié)果放入緩存。這樣,后面的請求就去緩存中讀取,使得請求能夠迅速響應(yīng)。

特別是在秒殺系統(tǒng),在同一時(shí)間,幾乎所有人都在點(diǎn),都在下單。。。執(zhí)行的是同一操作———向數(shù)據(jù)庫查數(shù)據(jù)。

1350514-20181122150708447-679026964.png

根據(jù)交互效果的不同,響應(yīng)時(shí)間沒有固定標(biāo)準(zhǔn)。在理想狀態(tài)下,我們的頁面跳轉(zhuǎn)需要在瞬間解決,對于頁內(nèi)操作則需要在剎那間解決。

并發(fā):

如下圖所示,在大并發(fā)的情況下,所有的請求直接訪問數(shù)據(jù)庫,數(shù)據(jù)庫會出現(xiàn)連接異常。這個(gè)時(shí)候,就需要使用 Redis 做一個(gè)緩沖操作,讓請求先訪問到 Redis,而不是直接訪問數(shù)據(jù)庫。

1350514-20181122151016829-1390799565.jpg

使用 Redis 的常見問題緩存和數(shù)據(jù)庫雙寫一致性問題緩存雪崩問題緩存擊穿問題緩存的并發(fā)競爭問題二 單線程的 Redis 為什么這么快

這個(gè)問題是對 Redis 內(nèi)部機(jī)制的一個(gè)考察。很多人都不知道 Redis 是單線程工作模型。

原因主要是以下三點(diǎn):純內(nèi)存操作單線程操作,避免了頻繁的上下文切換采用了非阻塞 I/O 多路復(fù)用機(jī)制

仔細(xì)說一說 I/O 多路復(fù)用機(jī)制,打一個(gè)比方:小名在 A 城開了一家快餐店店,負(fù)責(zé)同城快餐服務(wù)。小明因?yàn)橘Y金限制,雇傭了一批配送員,然后小曲發(fā)現(xiàn)資金不夠了,只夠買一輛車送快遞。

經(jīng)營方式一

客戶每下一份訂單,小明就讓一個(gè)配送員盯著,然后讓人開車去送。慢慢的小曲就發(fā)現(xiàn)了這種經(jīng)營方式存在下述問題:

時(shí)間都花在了搶車上了,大部分配送員都處在閑置狀態(tài),搶到車才能去送。

隨著下單的增多,配送員也越來越多,小明發(fā)現(xiàn)快遞店里越來越擠,沒辦法雇傭新的配送員了。配送員之間的協(xié)調(diào)很花時(shí)間。綜合上述缺點(diǎn),小明痛定思痛,提出了經(jīng)營方式二。經(jīng)營方式二

小明只雇傭一個(gè)配送員。當(dāng)客戶下單,小明按送達(dá)地點(diǎn)標(biāo)注好,依次放在一個(gè)地方。最后,讓配送員依次開著車去送,送好了就回來拿下一個(gè)。上述兩種經(jīng)營方式對比,很明顯第二種效率更高。

在上述比喻中:每個(gè)配送員→每個(gè)線程每個(gè)訂單→每個(gè) Socket(I/O 流)訂單的送達(dá)地點(diǎn)→Socket 的不同狀態(tài)客戶送餐請求→來自客戶端的請求明曲的經(jīng)營方式→服務(wù)端運(yùn)行的代碼一輛車→CPU 的核數(shù)于是有了如下結(jié)論:經(jīng)營方式一就是傳統(tǒng)的并發(fā)模型,每個(gè) I/O 流(訂單)都有一個(gè)新的線程(配送員)管理。經(jīng)營方式二就是 I/O 多路復(fù)用。只有單個(gè)線程(一個(gè)配送員),通過跟蹤每個(gè) I/O 流的狀態(tài)(每個(gè)配送員的送達(dá)地點(diǎn)),來管理多個(gè) I/O 流。

下面類比到真實(shí)的 Redis 線程模型,如圖所示:

1350514-20181122151558533-351952939.jpg

Redis-client 在操作的時(shí)候,會產(chǎn)生具有不同事件類型的 Socket。在服務(wù)端,有一段 I/O 多路復(fù)用程序,將其置入隊(duì)列之中。然后,文件事件分派器,依次去隊(duì)列中取,轉(zhuǎn)發(fā)到不同的事件處理器中。

三 Redis 的數(shù)據(jù)類型及使用場景

一個(gè)合格的程序員,這五種類型都會用到。

String

最常規(guī)的 set/get 操作,Value 可以是 String 也可以是數(shù)字。一般做一些復(fù)雜的計(jì)數(shù)功能的緩存。

Hash

這里 Value 存放的是結(jié)構(gòu)化的對象,比較方便的就是操作其中的某個(gè)字段。我在做單點(diǎn)登錄的時(shí)候,就是用這種數(shù)據(jù)結(jié)構(gòu)存儲用戶信息,以 CookieId 作為 Key,設(shè)置 30 分鐘為緩存過期時(shí)間,能很好的模擬出類似 Session 的效果。

List

使用 List 的數(shù)據(jù)結(jié)構(gòu),可以做簡單的消息隊(duì)列的功能。另外,可以利用 lrange 命令,做基于 Redis 的分頁功能,性能極佳,用戶體驗(yàn)好。

Set

因?yàn)?Set 堆放的是一堆不重復(fù)值的集合。所以可以做全局去重的功能。我們的系統(tǒng)一般都是集群部署,使用 JVM 自帶的 Set 比較麻煩。另外,就是利用交集、并集、差集等操作,可以計(jì)算共同喜好,全部的喜好,自己獨(dú)有的喜好等功能。

Sorted Set

Sorted Set 多了一個(gè)權(quán)重參數(shù) Score,集合中的元素能夠按 Score 進(jìn)行排列??梢宰雠判邪駪?yīng)用,取 TOP N 操作。Sorted Set 可以用來做延時(shí)任務(wù)。

四 Redis 的過期策略和內(nèi)存淘汰機(jī)制

Redis 是否用到家,從這就能看出來。比如你 Redis 只能存 5G 數(shù)據(jù),可是你寫了 10G,那會刪 5G 的數(shù)據(jù)。怎么刪的,這個(gè)問題思考過么?

正解:Redis 采用的是定期刪除+惰性刪除策略。

為什么不用定時(shí)刪除策略

定時(shí)刪除,用一個(gè)定時(shí)器來負(fù)責(zé)監(jiān)視 Key,過期則自動刪除。雖然內(nèi)存及時(shí)釋放,但是十分消耗 CPU 資源。在大并發(fā)請求下,CPU 要將時(shí)間應(yīng)用在處理請求,而不是刪除 Key,因此沒有采用這一策略。

定期刪除+惰性刪除如何工作

定期刪除,Redis 默認(rèn)每個(gè) 100ms 檢查,有過期 Key 則刪除。需要說明的是,Redis 不是每個(gè) 100ms 將所有的 Key 檢查一次,而是隨機(jī)抽取進(jìn)行檢查。如果只采用定期刪除策略,會導(dǎo)致很多 Key 到時(shí)間沒有刪除。于是,惰性刪除派上用場。

采用定期刪除+惰性刪除就沒其他問題了么

不是的,如果定期刪除沒刪除掉 Key。并且你也沒及時(shí)去請求 Key,也就是說惰性刪除也沒生效。這樣,Redis 的內(nèi)存會越來越高。那么就應(yīng)該采用內(nèi)存淘汰機(jī)制。

在 redis.conf 中有一行配置:

# maxmemory-policy volatile-lru

該配置就是配內(nèi)存淘汰策略的:noeviction:當(dāng)內(nèi)存不足以容納新寫入數(shù)據(jù)時(shí),新寫入操作會報(bào)錯(cuò)。allkeys-lru:當(dāng)內(nèi)存不足以容納新寫入數(shù)據(jù)時(shí),在鍵空間中,移除最近最少使用的 Key。(推薦使用,目前項(xiàng)目在用這種)(最近最久使用算法)allkeys-random:當(dāng)內(nèi)存不足以容納新寫入數(shù)據(jù)時(shí),在鍵空間中,隨機(jī)移除某個(gè) Key。(應(yīng)該也沒人用吧,你不刪最少使用 Key,去隨機(jī)刪)volatile-lru:當(dāng)內(nèi)存不足以容納新寫入數(shù)據(jù)時(shí),在設(shè)置了過期時(shí)間的鍵空間中,移除最近最少使用的 Key。這種情況一般是把 Redis 既當(dāng)緩存,又做持久化存儲的時(shí)候才用。(不推薦)volatile-random:當(dāng)內(nèi)存不足以容納新寫入數(shù)據(jù)時(shí),在設(shè)置了過期時(shí)間的鍵空間中,隨機(jī)移除某個(gè) Key。(依然不推薦)volatile-ttl:當(dāng)內(nèi)存不足以容納新寫入數(shù)據(jù)時(shí),在設(shè)置了過期時(shí)間的鍵空間中,有更早過期時(shí)間的 Key 優(yōu)先移除。(不推薦)五 Redis 和數(shù)據(jù)庫雙寫一致性問題

一致性問題還可以再分為最終一致性和強(qiáng)一致性。數(shù)據(jù)庫和緩存雙寫,就必然會存在不一致的問題。前提是如果對數(shù)據(jù)有強(qiáng)一致性要求,不能放緩存。我們所做的一切,只能保證最終一致性。

另外,我們所做的方案從根本上來說,只能降低不一致發(fā)生的概率。因此,有強(qiáng)一致性要求的數(shù)據(jù),不能放緩存。首先,采取正確更新策略,先更新數(shù)據(jù)庫,再刪緩存。其次,因?yàn)榭赡艽嬖趧h除緩存失敗的問題,提供一個(gè)補(bǔ)償措施即可,例如利用消息隊(duì)列。

六 如何應(yīng)對緩存穿透和緩存雪崩問題

這兩個(gè)問題,一般中小型傳統(tǒng)軟件企業(yè)很難碰到。如果有大并發(fā)的項(xiàng)目,流量有幾百萬左右,這兩個(gè)問題一定要深刻考慮。緩存穿透,即黑客故意去請求緩存中不存在的數(shù)據(jù),導(dǎo)致所有的請求都懟到數(shù)據(jù)庫上,從而數(shù)據(jù)庫連接異常。

緩存穿透解決方案:利用互斥鎖,緩存失效的時(shí)候,先去獲得鎖,得到鎖了,再去請求數(shù)據(jù)庫。沒得到鎖,則休眠一段時(shí)間重試。采用異步更新策略,無論 Key 是否取到值,都直接返回。Value 值中維護(hù)一個(gè)緩存失效時(shí)間,緩存如果過期,異步起一個(gè)線程去讀數(shù)據(jù)庫,更新緩存。需要做緩存預(yù)熱(項(xiàng)目啟動前,先加載緩存)操作。提供一個(gè)能迅速判斷請求是否有效的攔截機(jī)制,比如,利用布隆過濾器,內(nèi)部維護(hù)一系列合法有效的 Key。迅速判斷出,請求所攜帶的 Key 是否合法有效。如果不合法,則直接返回。

緩存雪崩,即緩存同一時(shí)間大面積的失效,這個(gè)時(shí)候又來了一波請求,結(jié)果請求都懟到數(shù)據(jù)庫上,從而導(dǎo)致數(shù)據(jù)庫連接異常。

緩存雪崩解決方案:給緩存的失效時(shí)間,加上一個(gè)隨機(jī)值,避免集體失效。使用互斥鎖,但是該方案吞吐量明顯下降了。雙緩存。我們有兩個(gè)緩存,緩存 A 和緩存 B。緩存 A 的失效時(shí)間為 20 分鐘,緩存 B 不設(shè)失效時(shí)間。自己做緩存預(yù)熱操作。然后細(xì)分以下幾個(gè)小點(diǎn):從緩存 A 讀數(shù)據(jù)庫,有則直接返回;A 沒有數(shù)據(jù),直接從 B 讀數(shù)據(jù),直接返回,并且異步啟動一個(gè)更新線程,更新線程同時(shí)更新緩存 A 和緩存 B。八 如何解決 Redis 的并發(fā)競爭 Key 問題

這個(gè)問題大致就是,同時(shí)有多個(gè)子系統(tǒng)去 Set 一個(gè) Key。這個(gè)時(shí)候要注意什么呢?大家基本都是推薦用 Redis 事務(wù)機(jī)制。

但是并不推薦使用 Redis 的事務(wù)機(jī)制。因?yàn)槲覀兊纳a(chǎn)環(huán)境,基本都是 Redis 集群環(huán)境,做了數(shù)據(jù)分片操作。你一個(gè)事務(wù)中有涉及到多個(gè) Key 操作的時(shí)候,這多個(gè) Key 不一定都存儲在同一個(gè) redis-server 上。因此,Redis 的事務(wù)機(jī)制,十分雞肋。

如果對這個(gè) Key 操作,不要求順序

這種情況下,準(zhǔn)備一個(gè)分布式鎖,大家去搶鎖,搶到鎖就做 set 操作即可,比較簡單。

如果對這個(gè) Key 操作,要求順序

假設(shè)有一個(gè) key1,系統(tǒng) A 需要將 key1 設(shè)置為 valueA,系統(tǒng) B 需要將 key1 設(shè)置為 valueB,系統(tǒng) C 需要將 key1 設(shè)置為 valueC。

期望按照 key1 的 value 值按照 valueA > valueB > valueC 的順序變化。這種時(shí)候我們在數(shù)據(jù)寫入數(shù)據(jù)庫的時(shí)候,需要保存一個(gè)時(shí)間戳。

假設(shè)時(shí)間戳如下:

  • 系統(tǒng) A key 1 {valueA 3:00}
  • 系統(tǒng) B key 1 {valueB 3:05}
  • 系統(tǒng) C key 1 {valueC 3:10}

那么,假設(shè)系統(tǒng) B 先搶到鎖,將 key1 設(shè)置為{valueB 3:05}。接下來系統(tǒng) A 搶到鎖,發(fā)現(xiàn)自己的 valueA 的時(shí)間戳早于緩存中的時(shí)間戳,那就不做 set 操作了,以此類推。其他方法,比如利用隊(duì)列,將 set 方法變成串行訪問也可以。

相關(guān)文章

  • 基于redis.properties文件的配置及說明介紹

    基于redis.properties文件的配置及說明介紹

    今天小編就為大家分享一篇基于redis.properties文件的配置及說明介紹,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-05-05
  • Redis中鍵和數(shù)據(jù)庫通用指令詳解

    Redis中鍵和數(shù)據(jù)庫通用指令詳解

    這篇文章主要為大家介紹了Redis中鍵和數(shù)據(jù)庫通用指令基本操作詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2022-08-08
  • Redis 單機(jī)安裝和哨兵模式集群安裝的實(shí)現(xiàn)

    Redis 單機(jī)安裝和哨兵模式集群安裝的實(shí)現(xiàn)

    本文主要介紹了Redis 單機(jī)安裝和哨兵模式集群安裝的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2022-07-07
  • 聊一聊Redis與MySQL雙寫一致性如何保證

    聊一聊Redis與MySQL雙寫一致性如何保證

    一致性就是數(shù)據(jù)保持一致,在分布式系統(tǒng)中,可以理解為多個(gè)節(jié)點(diǎn)中數(shù)據(jù)的值是一致的。本文給大家分享Redis與MySQL雙寫一致性該如何保證,感興趣的朋友一起看看吧
    2021-06-06
  • Redis 數(shù)據(jù)庫忘記密碼找回或重置的解決方法

    Redis 數(shù)據(jù)庫忘記密碼找回或重置的解決方法

    對于 Redis 數(shù)據(jù)庫,如果忘記了密碼,可以通過密碼重置來找回密碼,今天通過本文給大家分享Redis 數(shù)據(jù)庫忘記密碼找回或重置的解決方法,感興趣的朋友一起看看吧
    2024-01-01
  • Redis 緩存擊穿問題及解決方案

    Redis 緩存擊穿問題及解決方案

    緩存擊穿是指在高并發(fā)環(huán)境下,大量請求同時(shí)訪問緩存中不存在的數(shù)據(jù),導(dǎo)致這些請求穿透到數(shù)據(jù)庫,本文主要介紹了Redis緩存擊穿問題及解決方案
    2023-12-12
  • Redis實(shí)現(xiàn)商品秒殺的示例代碼

    Redis實(shí)現(xiàn)商品秒殺的示例代碼

    本文主要介紹了Redis實(shí)現(xiàn)商品秒殺的示例代碼,詳細(xì)介紹了Redis的List、Set和Hash類型,以及使用Redis事務(wù)保證原子性的方式,具有一定的參考價(jià)值,感興趣的可以了解一下
    2024-02-02
  • 基于Redis延遲隊(duì)列的實(shí)現(xiàn)代碼

    基于Redis延遲隊(duì)列的實(shí)現(xiàn)代碼

    在生活中很多時(shí)候都會用到延遲隊(duì)列,本文基于Redis延遲隊(duì)列的實(shí)現(xiàn)代碼,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2021-05-05
  • Redis過期監(jiān)聽機(jī)制,訂單超時(shí)自動取消方式

    Redis過期監(jiān)聽機(jī)制,訂單超時(shí)自動取消方式

    這篇文章主要介紹了Redis過期監(jiān)聽機(jī)制,訂單超時(shí)自動取消方式,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2024-05-05
  • 解決redis批量刪除key值的問題

    解決redis批量刪除key值的問題

    在開發(fā)過程中,會遇到要批量刪除某種規(guī)則的key值,但是通常情況下沒有批量刪除某一個(gè)類的命令,遇到這種情況該如何處理呢?下面小編給大家?guī)砹藃edis批量刪除key值的問題,感興趣的朋友一起看看吧
    2022-03-03

最新評論