C++中volatile和mutable關(guān)鍵字用法詳解
C/C++中的volatile關(guān)鍵字和const對(duì)應(yīng),用來修飾變量,用于告訴編譯器該變量值是不穩(wěn)定的,可能被更改。使用volatile注意事項(xiàng):
(1). 編譯器會(huì)對(duì)帶有volatile關(guān)鍵字的變量禁用優(yōu)化(A volatile specifier is a hint to a compiler that an object may change its value in ways not specified by the language so that aggressive optimizations must be avoided)。
(2). 當(dāng)多個(gè)線程都要用到某一個(gè)變量且該變量的值會(huì)被改變時(shí)應(yīng)該用volatile聲明,該關(guān)鍵字的作用是防止編譯器優(yōu)化把變量從內(nèi)存裝入CPU寄存器中。如果變量被裝入寄存器,那么多個(gè)線程有可能有的使用內(nèi)存中的變量,有的使用寄存器中的變量,這會(huì)造成程序的錯(cuò)誤執(zhí)行。volatile的意思是讓編譯器每次操作該變量時(shí)一定要從內(nèi)存中取出,而不是使用已經(jīng)存在寄存器中的值(It cannot cache the variables in register)。
(3). 中斷服務(wù)程序中訪問到的變量最好帶上volatile。
(4). 并行設(shè)備的硬件寄存器的變量最好帶上volatile。
(5). 聲明的變量可以同時(shí)帶有const和volatile關(guān)鍵字。
(6). 多個(gè)volatile變量間的操作,是不會(huì)被編譯器交換順序的,能夠保證volatile變量間的順序性,編譯器不會(huì)進(jìn)行亂序優(yōu)化(The value cannot change in order of assignment)。但volatile變量和非volatile變量之間的順序,編譯器不保證順序,可能會(huì)進(jìn)行亂序優(yōu)化。
C++中的mutable關(guān)鍵字使用場(chǎng)景:
(1). 允許即使包含它的對(duì)象被聲明為const時(shí)仍可修改聲明為mutable的類成員(sometimes there is requirement to modify one or more data members of class/struct through const function even though you don't want the function to update other members of class/struct. This task can be easily performed by using mutable keyword)。
(2). 應(yīng)用在C++11 lambda表達(dá)式來表示按值捕獲的值是可修改的,默認(rèn)情況下是不可修改的,但修改僅在lambda式內(nèi)有效(since c++11 mutable can be used on a lambda to denote that things captured by value are modifiable (they aren't by default))。
詳細(xì)用法見下面的測(cè)試代碼,下面是從其他文章中copy的測(cè)試代碼,詳細(xì)內(nèi)容介紹可以參考對(duì)應(yīng)的reference:
#include "volatile_mutable.hpp"
#include <iostream>
#include <stdio.h>
#include <time.h>
#include <mutex>
#include <string.h>
namespace volatile_mutable_ {
///////////////////////////////////////////////////////////
int test_volatile_1()
{
volatile int i1 = 0; // correct
int volatile i2 = 0; // correct
return 0;
}
///////////////////////////////////////////////////////////
// reference: https://en.cppreference.com/w/c/language/volatile
int test_volatile_2()
{
{ // Any attempt to read or write to an object whose type is volatile-qualified through a non-volatile lvalue results in undefined behavior
volatile int n = 1; // object of volatile-qualified type
int* p = (int*)&n;
int val = *p; // undefined behavior in C, Note: link does not report an error under C++
fprintf(stdout, "val: %d\n", val);
}
{ // A member of a volatile-qualified structure or union type acquires the qualification of the type it belongs to
typedef struct ss { int i; const int ci; } s;
// the type of s.i is int, the type of s.ci is const int
volatile s vs = { 1, 2 };
// the types of vs.i and vs.ci are volatile int and const volatile int
}
{ // If an array type is declared with the volatile type qualifier (through the use of typedef), the array type is not volatile-qualified, but its element type is
typedef int A[2][3];
volatile A a = { {4, 5, 6}, {7, 8, 9} }; // array of array of volatile int
//int* pi = a[0]; // Error: a[0] has type volatile int*
volatile int* pi = a[0];
}
{ // A pointer to a non-volatile type can be implicitly converted to a pointer to the volatile-qualified version of the same or compatible type. The reverse conversion can be performed with a cast expression
int* p = nullptr;
volatile int* vp = p; // OK: adds qualifiers (int to volatile int)
//p = vp; // Error: discards qualifiers (volatile int to int)
p = (int*)vp; // OK: cast
}
{ // volatile disable optimizations
clock_t t = clock();
double d = 0.0;
for (int n = 0; n < 10000; ++n)
for (int m = 0; m < 10000; ++m)
d += d * n*m; // reads and writes to a non-volatile
fprintf(stdout, "Modified a non-volatile variable 100m times. Time used: %.2f seconds\n", (double)(clock() - t) / CLOCKS_PER_SEC);
t = clock();
volatile double vd = 0.0;
for (int n = 0; n < 10000; ++n)
for (int m = 0; m < 10000; ++m)
vd += vd * n*m; // reads and writes to a volatile
fprintf(stdout, "Modified a volatile variable 100m times. Time used: %.2f seconds\n", (double)(clock() - t) / CLOCKS_PER_SEC);
}
return 0;
}
///////////////////////////////////////////////////////////
// reference: https://en.cppreference.com/w/cpp/language/cv
int test_volatile_3()
{
int n1 = 0; // non-const object
const int n2 = 0; // const object
int const n3 = 0; // const object (same as n2)
volatile int n4 = 0; // volatile object
const struct {
int n1;
mutable int n2;
} x = { 0, 0 }; // const object with mutable member
n1 = 1; // ok, modifiable object
//n2 = 2; // error: non-modifiable object
n4 = 3; // ok, treated as a side-effect
//x.n1 = 4; // error: member of a const object is const
x.n2 = 4; // ok, mutable member of a const object isn't const
const int& r1 = n1; // reference to const bound to non-const object
//r1 = 2; // error: attempt to modify through reference to const
const_cast<int&>(r1) = 2; // ok, modifies non-const object n1
fprintf(stdout, "n1: %d\n", n1); // 2
const int& r2 = n2; // reference to const bound to const object
//r2 = 2; // error: attempt to modify through reference to const
const_cast<int&>(r2) = 2; // undefined behavior: attempt to modify const object n2, Note: link does not report an error under C++
fprintf(stdout, "n2: %d\n", n2); // 0
return 0;
}
///////////////////////////////////////////////////////////
// reference: https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
int test_volatile_4()
{
{
const int local = 10;
int *ptr = (int*)&local;
fprintf(stdout, "Initial value of local : %d \n", local); // 10
*ptr = 100;
fprintf(stdout, "Modified value of local: %d \n", local); // 10
}
{
const volatile int local = 10;
int *ptr = (int*)&local;
fprintf(stdout, "Initial value of local : %d \n", local); // 10
*ptr = 100;
fprintf(stdout, "Modified value of local: %d \n", local); // 100
}
return 0;
}
///////////////////////////////////////////////////////////
// reference: https://en.cppreference.com/w/cpp/language/cv
int test_mutable_1()
{
// Mutable is used to specify that the member does not affect the externally visible state of the class (as often used for mutexes,
// memo caches, lazy evaluation, and access instrumentation)
class ThreadsafeCounter {
public:
int get() const {
std::lock_guard<std::mutex> lk(m);
return data;
}
void inc() {
std::lock_guard<std::mutex> lk(m);
++data;
}
private:
mutable std::mutex m; // The "M&M rule": mutable and mutex go together
int data = 0;
};
return 0;
}
///////////////////////////////////////////////////////////
// reference: https://www.tutorialspoint.com/cplusplus-mutable-keyword
int test_mutable_2()
{
class Test {
public:
Test(int x = 0, int y = 0) : a(x), b(y) {}
void seta(int x = 0) { a = x; }
void setb(int y = 0) { b = y; }
void disp() { fprintf(stdout, "a: %d, b: %d\n", a, b); }
public:
int a;
mutable int b;
};
const Test t(10, 20);
fprintf(stdout, "t.a: %d, t.b: %d \n", t.a, t.b); // 10, 20
//t.a=30; // Error occurs because a can not be changed, because object is constant.
t.b = 100; // b still can be changed, because b is mutable.
fprintf(stdout, "t.a: %d, t.b: %d \n", t.a, t.b); // 10, 100
return 0;
}
///////////////////////////////////////////////////////////
// reference: https://www.geeksforgeeks.org/c-mutable-keyword/
int test_mutable_3()
{
using std::cout;
using std::endl;
class Customer {
public:
Customer(char* s, char* m, int a, int p)
{
strcpy(name, s);
strcpy(placedorder, m);
tableno = a;
bill = p;
}
void changePlacedOrder(char* p) const { strcpy(placedorder, p); }
void changeBill(int s) const { bill = s; }
void display() const
{
cout << "Customer name is: " << name << endl;
cout << "Food ordered by customer is: " << placedorder << endl;
cout << "table no is: " << tableno << endl;
cout << "Total payable amount: " << bill << endl;
}
private:
char name[25];
mutable char placedorder[50];
int tableno;
mutable int bill;
};
const Customer c1("Pravasi Meet", "Ice Cream", 3, 100);
c1.display();
c1.changePlacedOrder("GulabJammuns");
c1.changeBill(150);
c1.display();
return 0;
}
///////////////////////////////////////////////////////////
// reference: https://stackoverflow.com/questions/105014/does-the-mutable-keyword-have-any-purpose-other-than-allowing-the-variable-to
int test_mutable_4()
{
int x = 0;
auto f1 = [=]() mutable { x = 42; }; // OK
//auto f2 = [=]() { x = 42; }; // Error: a by-value capture cannot be modified in a non-mutable lambda
fprintf(stdout, "x: %d\n", x); // 0
return 0;
}
} // namespace volatile_mutable_
GitHub:https://github.com/fengbingchun/Messy_Test
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
QT編寫窗口插件實(shí)現(xiàn)調(diào)用窗口的自適應(yīng)
這篇文章主要為大家詳細(xì)介紹了QT編寫窗口插件實(shí)現(xiàn)調(diào)用窗口的自適應(yīng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2021-06-06
wchar_t,char,string,wstring之間的相互轉(zhuǎn)換
以下是對(duì)wchar_t,char,string,wstring之間的相互轉(zhuǎn)換進(jìn)行了詳細(xì)的分析介紹,需要的朋友可以過來參考下,希望對(duì)大家有所幫助2013-09-09
C++實(shí)現(xiàn)LeetCode(101.判斷對(duì)稱樹)
這篇文章主要介紹了C++實(shí)現(xiàn)LeetCode(101.判斷對(duì)稱樹),本篇文章通過簡(jiǎn)要的案例,講解了該項(xiàng)技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下2021-07-07
C++中用指向數(shù)組的指針作函數(shù)參數(shù)
多維數(shù)組名作為函數(shù)參數(shù)傳遞:在二維數(shù)組中,數(shù)組名a是指向首行a[0]的指針,也就是說a=&a[0]; a[0]是指向首元素a[0][0]的指針,也就是說a[0]=&a[0][0]2013-10-10
數(shù)據(jù)結(jié)構(gòu)課程設(shè)計(jì)- 解析最少換車次數(shù)的問題詳解
數(shù)據(jù)結(jié)構(gòu)課程設(shè)計(jì)- 解析最少換車次數(shù)的問題詳解2013-05-05
關(guān)于C++友元函數(shù)的實(shí)現(xiàn)講解
今天小編就為大家分享一篇關(guān)于關(guān)于C++友元函數(shù)的實(shí)現(xiàn)講解,小編覺得內(nèi)容挺不錯(cuò)的,現(xiàn)在分享給大家,具有很好的參考價(jià)值,需要的朋友一起跟隨小編來看看吧2018-12-12
深入C++浮點(diǎn)數(shù)無效值定義與判定的解決辦法
本篇文章是對(duì)C++中浮點(diǎn)數(shù)無效值定義與判定進(jìn)行了介紹,需要的朋友參考下2013-05-05

