spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖問題
在采用log4j
的kafka-appender收集spark
任務運行日志時,發(fā)現(xiàn)提交到yarn
上的任務始終ACCEPTED
狀態(tài),無法進入RUNNING
狀態(tài),并且會重試兩次后超時。期初認為是yarn資源不足導致,但在確認yarn資源充裕的時候問題依舊,而且基本上能穩(wěn)定復現(xiàn)。
起初是這么配置spark日志輸出到kafka的:
log4j.rootCategory=INFO, console, kafka log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.target=System.err log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d{yyyy/MM/dd HH:mm:ss.SSS} %p %c{1}: [${log4j.pipelineId}] %m%n # Kafka appender log4j.appender.kafka=org.apache.kafka.log4jappender.KafkaLog4jAppender # Set Kafka topic and brokerList log4j.appender.kafka.topic=yarn_spark_log log4j.appender.kafka.brokerList=localhost:9092 log4j.appender.kafka.compressionType=none log4j.appender.kafka.syncSend=false log4j.appender.kafka.maxBlockMs=10 log4j.appender.kafka.layout=org.apache.log4j.PatternLayout log4j.appender.kafka.layout.ConversionPattern=%d{yyyy/MM/dd HH:mm:ss.SSS} %p %c{1}: [${log4j.pipelineId}] %m
這里用org.apache.kafka.log4jappender.KafkaLog4jAppender
默認將所有日志都輸出到kafka,這個appender已經(jīng)被kafka官方維護,穩(wěn)定性應該是可以保障的。
問題定位
發(fā)現(xiàn)問題后,嘗試將輸出到kafka的規(guī)則去掉,問題解除!于是把問題定位到跟日志輸出到kafka有關。通過其他測試,證實目標kafka其實是正常的,這就非常奇怪了。
查看yarn的ResourceManager日志,發(fā)現(xiàn)有如下超時
2020-05-07 21:49:48,230 INFO org.apache.hadoop.yarn.util.AbstractLivelinessMonitor: Expired:appattempt_1578970174552_3204_000002 Timed out after 600 secs
2020-05-07 21:49:48,230 INFO org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl: Updating application attempt appattempt_1578970174552_3204_000002 with final
state: FAILED, and exit status: -1000
2020-05-07 21:49:48,231 INFO org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl: appattempt_1578970174552_3204_000002 State change from LAUNCHED to FINAL_SAV
ING on event = EXPIRE
表明,yarn本身是接收任務的,但是發(fā)現(xiàn)任務遲遲沒有啟動。在spark的場景下其實是指只有driver啟動了,但是沒有啟動executor。
而查看driver日志,發(fā)現(xiàn)日志輸出到一個地方就卡住了,不往下繼續(xù)了。通過對比成功運行和卡住的情況發(fā)現(xiàn),日志卡在這條上:
2020/05/07 19:37:10.324 INFO SecurityManager: Changing view acls to: yarn,root
2020/05/07 19:37:10.344 INFO Metadata: Cluster ID: 6iG6WHA2SoK7FfgGgWHt_A
卡住的情況下,只會打出SecurityManager
這行,而無法打出Metadata
這行。
猜想Metadata
這行是kafka-client
本身打出來的,因為整個上下文只有yarn, spark, kafka-client可能會打出這個日志。
在kafka-client 2.2.0版本中找到這個日志是輸出位置:
public synchronized void update(MetadataResponse metadataResponse, long now) { ... String newClusterId = cache.cluster().clusterResource().clusterId(); if (!Objects.equals(previousClusterId, newClusterId)) { log.info("Cluster ID: {}", newClusterId); } ... }
看到synchronized
,高度懷疑死鎖。于是考慮用jstack
分析:
在yarn上運行spark任務的時候,driver進程叫ApplicationMaster,executor進程叫CoarseGrainedExecutorBackend。這里首先嘗試再復現(xiàn)過程中找到drvier最終在哪個節(jié)點上運行,然后快速使用jstack -F <pid>打印堆棧
jstack果然不負眾望,報告了死鎖!這里我把結(jié)果貼的全一點
[root@node1 ~]# jstack 20136 20136: Unable to open socket file: target process not responding or HotSpot VM not loaded The -F option can be used when the target process is not responding [root@node1 ~]# jstack -F 20136 Attaching to process ID 20136, please wait... Debugger attached successfully. Server compiler detected. JVM version is 25.231-b11 Deadlock Detection: Found one Java-level deadlock: ============================= "kafka-producer-network-thread | producer-1": waiting to lock Monitor@0x00000000025fcc48 (Object@0x00000000ed680b60, a org/apache/kafka/log4jappender/KafkaLog4jAppender), which is held by "main" "main": waiting to lock Monitor@0x00007fec9dbde038 (Object@0x00000000ee44de38, a org/apache/kafka/clients/Metadata), which is held by "kafka-producer-network-thread | producer-1" Found a total of 1 deadlock. Thread 20157: (state = BLOCKED) - org.apache.log4j.AppenderSkeleton.doAppend(org.apache.log4j.spi.LoggingEvent) @bci=0, line=231 (Interpreted frame) - org.apache.log4j.helpers.AppenderAttachableImpl.appendLoopOnAppenders(org.apache.log4j.spi.LoggingEvent) @bci=41, line=66 (Interpreted frame) - org.apache.log4j.Category.callAppenders(org.apache.log4j.spi.LoggingEvent) @bci=26, line=206 (Interpreted frame) - org.apache.log4j.Category.forcedLog(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=14, line=391 (Interpreted frame) - org.apache.log4j.Category.log(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=34, line=856 (Interpreted frame) - org.slf4j.impl.Log4jLoggerAdapter.info(java.lang.String, java.lang.Object) @bci=34, line=324 (Interpreted frame) - org.apache.kafka.clients.Metadata.update(org.apache.kafka.common.requests.MetadataResponse, long) @bci=317, line=365 (Interpreted frame) - org.apache.kafka.clients.NetworkClient$DefaultMetadataUpdater.handleCompletedMetadataResponse(org.apache.kafka.common.requests.RequestHeader, long, org.apache.kafka.common.requests.MetadataResponse) @bci=184, line=1031 (Interpreted frame) - org.apache.kafka.clients.NetworkClient.handleCompletedReceives(java.util.List, long) @bci=215, line=822 (Interpreted frame) - org.apache.kafka.clients.NetworkClient.poll(long, long) @bci=132, line=544 (Interpreted frame) - org.apache.kafka.clients.producer.internals.Sender.run(long) @bci=227, line=311 (Interpreted frame) - org.apache.kafka.clients.producer.internals.Sender.run() @bci=28, line=235 (Interpreted frame) - java.lang.Thread.run() @bci=11, line=748 (Interpreted frame) Thread 20150: (state = BLOCKED) Thread 20149: (state = BLOCKED) - java.lang.Object.wait(long) @bci=0 (Interpreted frame) - java.lang.ref.ReferenceQueue.remove(long) @bci=59, line=144 (Interpreted frame) - java.lang.ref.ReferenceQueue.remove() @bci=2, line=165 (Interpreted frame) - java.lang.ref.Finalizer$FinalizerThread.run() @bci=36, line=216 (Interpreted frame) Thread 20148: (state = BLOCKED) - java.lang.Object.wait(long) @bci=0 (Interpreted frame) - java.lang.Object.wait() @bci=2, line=502 (Interpreted frame) - java.lang.ref.Reference.tryHandlePending(boolean) @bci=54, line=191 (Interpreted frame) - java.lang.ref.Reference$ReferenceHandler.run() @bci=1, line=153 (Interpreted frame) Thread 20137: (state = BLOCKED) - java.lang.Object.wait(long) @bci=0 (Interpreted frame) - org.apache.kafka.clients.Metadata.awaitUpdate(int, long) @bci=63, line=261 (Interpreted frame) - org.apache.kafka.clients.producer.KafkaProducer.waitOnMetadata(java.lang.String, java.lang.Integer, long) @bci=160, line=983 (Interpreted frame) - org.apache.kafka.clients.producer.KafkaProducer.doSend(org.apache.kafka.clients.producer.ProducerRecord, org.apache.kafka.clients.producer.Callback) @bci=19, line=860 (Interpreted frame) - org.apache.kafka.clients.producer.KafkaProducer.send(org.apache.kafka.clients.producer.ProducerRecord, org.apache.kafka.clients.producer.Callback) @bci=12, line=840 (Interpreted frame) - org.apache.kafka.clients.producer.KafkaProducer.send(org.apache.kafka.clients.producer.ProducerRecord) @bci=3, line=727 (Interpreted frame) - org.apache.kafka.log4jappender.KafkaLog4jAppender.append(org.apache.log4j.spi.LoggingEvent) @bci=69, line=283 (Interpreted frame) - org.apache.log4j.AppenderSkeleton.doAppend(org.apache.log4j.spi.LoggingEvent) @bci=106, line=251 (Interpreted frame) - org.apache.log4j.helpers.AppenderAttachableImpl.appendLoopOnAppenders(org.apache.log4j.spi.LoggingEvent) @bci=41, line=66 (Interpreted frame) - org.apache.log4j.Category.callAppenders(org.apache.log4j.spi.LoggingEvent) @bci=26, line=206 (Interpreted frame) - org.apache.log4j.Category.forcedLog(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=14, line=391 (Interpreted frame) - org.apache.log4j.Category.log(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=34, line=856 (Interpreted frame) - org.slf4j.impl.Log4jLoggerAdapter.info(java.lang.String) @bci=12, line=305 (Interpreted frame) - org.apache.spark.internal.Logging$class.logInfo(org.apache.spark.internal.Logging, scala.Function0) @bci=29, line=54 (Interpreted frame) - org.apache.spark.SecurityManager.logInfo(scala.Function0) @bci=2, line=44 (Interpreted frame) - org.apache.spark.SecurityManager.setViewAcls(scala.collection.immutable.Set, java.lang.String) @bci=36, line=139 (Interpreted frame) - org.apache.spark.SecurityManager.<init>(org.apache.spark.SparkConf, scala.Option) @bci=158, line=81 (Interpreted frame) - org.apache.spark.deploy.yarn.ApplicationMaster.<init>(org.apache.spark.deploy.yarn.ApplicationMasterArguments) @bci=85, line=70 (Interpreted frame) - org.apache.spark.deploy.yarn.ApplicationMaster$.main(java.lang.String[]) @bci=25, line=802 (Interpreted frame) - org.apache.spark.deploy.yarn.ApplicationMaster.main(java.lang.String[]) @bci=4 (Interpreted frame)
到這里,已經(jīng)確定是死鎖,導致driver一開始就運行停滯,那么當然無法提交executor執(zhí)行。
具體的死鎖稍后分析,先考慮如何解決。從感性認識看,似乎只要不讓kafka-client的日志也輸出到kafka即可。實驗后,發(fā)現(xiàn)果然如此:如果只輸出org.apache.spark的日志就可以正常執(zhí)行。
根因分析
從stack的結(jié)果看,造成死鎖的是如下兩個線程:
- kafka-client內(nèi)部的網(wǎng)絡線程spark
- 主入口線程
兩個線程其實都是卡在打日志上了,觀察堆??梢园l(fā)現(xiàn),兩個線程同時持有了同一個log對象。而這個log對象實際上是kafka-appender。而kafka-appender本質(zhì)上持有kafka-client,及其內(nèi)部的Metadata對象。log4j的doAppend為了保證線程安全也用synchronized
修飾了:
public synchronized void doAppend(LoggingEvent event) { if(closed) { LogLog.error("Attempted to append to closed appender named ["+name+"]."); return; } if(!isAsSevereAsThreshold(event.level)) { return; } Filter f = this.headFilter; FILTER_LOOP: while(f != null) { switch(f.decide(event)) { case Filter.DENY: return; case Filter.ACCEPT: break FILTER_LOOP; case Filter.NEUTRAL: f = f.next; } } this.append(event); }
于是事情開始了:
- main線程嘗試打日志,首先進入了synchronized的doAppend,即獲取了
kafka-appender
的鎖 kafka-appender
內(nèi)部需要調(diào)用kafka-client發(fā)送日志到kafka,最終調(diào)用到Thread 20137
展示的,運行到Metadata.awaitUpdate(也是個synchronized方法),內(nèi)部的wait會嘗試獲取metadata的鎖。(詳見https://github.com/apache/kaf...)- 但此時,kafka-producer-network-thread線程剛好進入了上文提到的打
Cluster ID
這個日志的這個階段(update方法也是synchronized的),也就是說kafka-producer-network-thread線程獲得了metadata對象的鎖 - kafka-producer-network-thread線程要打印日志同樣執(zhí)行synchronized的doAppend,即獲取了
kafka-appender
的鎖
上圖main-thread持有了log對象鎖,要求獲取metadata對象鎖;kafka-producer-network-thread持有了metadata對象鎖,要求獲取log對象鎖于是造成了死鎖。
總結(jié)
到此這篇關于spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖的文章就介紹到這了,更多相關spark指定日志輸出內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
fastjson到底做錯了什么?為什么會被頻繁爆出漏洞?(推薦)
前段時間,fastjson被爆出過多次存在漏洞,很多文章報道了這件事兒,并且給出了升級建議。本文給大家分享fastjson的releaseNote以及部分源代碼。感興趣的朋友跟隨小編一起看看吧2020-07-07superset在linux和windows下的安裝和部署詳細教程
Superset 是 Airbnb開源的數(shù)據(jù)探查與可視化平臺,是個輕量級的BI工具,開發(fā)者可以在其開源代碼上根據(jù)需要進行二次開發(fā)。這篇文章主要介紹了superset在linux和windows下的安裝和部署詳細教程,需要的朋友可以參考下2020-10-10MyBatisCodeHelper-Pro插件破解版詳細教程[2.8.2]
MyBatisCodeHelper-Pro是IDEA下的一個插件,功能類似mybatis plugin。這篇文章給大家介紹MyBatisCodeHelper-Pro插件破解版[2.8.2]的相關知識,感興趣的朋友跟隨小編一起看看吧2020-09-09Elasticsearches通過坐標位置實現(xiàn)對附近人的搜索
這篇文章主要為大家介紹了Elasticsearches使用坐標位置實現(xiàn)對附近人的搜索,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-04-04asp php 清空access mysql mssql數(shù)據(jù)庫的代碼
php清空mysql asp情況access或mssql2008-12-12antd通過 filterDropdown 自定義按某天時間搜索功能
這篇文章主要介紹了antd通過 filterDropdown 自定義按某天時間搜索功能,本文通過實例代碼給大家介紹的非常詳細,具有一定的參考借鑒價值,需要的朋友可以參考下2019-08-08如何將服務器上的python代碼通過QQ發(fā)送回傳信息(附實現(xiàn)方法)
這篇文章主要介紹了我將服務器上的python代碼通過QQ發(fā)送回傳信息(附實現(xiàn)方法),本文通過實例代碼給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-05-05C++ Go語言實現(xiàn)將windows和linux文件刪除至回收站
這篇文章主要為大家詳細介紹了如何分別使用C++ Go語言實現(xiàn)將windows和linux文件刪除至回收站,感興趣的小伙伴可以跟隨小編一起學習一下2023-12-12