欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

java實現(xiàn)同態(tài)加密算法的實例代碼

 更新時間:2020年12月31日 10:06:59   作者:向彪-blockchain  
這篇文章主要給大家介紹了關(guān)于java實現(xiàn)同態(tài)加密算法的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧

什么是同態(tài)加密?

同態(tài)加密是上世紀(jì)七十年代就被提出的一個開放問題,旨在不暴露數(shù)據(jù)的情況下完成對數(shù)據(jù)的處理,關(guān)注的是數(shù)據(jù)處理安全。

想象一下這樣一個場景,作為一名滿懷理想的樓二代,你每天過著枯燥乏味的收租生活,希望擺脫世俗的枷鎖、銅臭的茍且去追求詩與遠(yuǎn)方。

你需要雇一個代理人去承擔(dān)收租的粗活,但又不希望其窺探你每月躺賺的收入。于是,你請高人打造了一套裝備,既能保證代理人順利完成收租,又不會泄露收入信息。

這套裝備包括信封、膠水、皮夾和神奇剪刀,每一樣?xùn)|西都有奇特的功能:

  1. 信封一旦用膠水密封,只有神奇剪刀才能拆開。
  2. 不論信封里裝了多少錢,信封的大小和重量都不會發(fā)生改變。
  3. 把多個信封放在皮夾里后,信封會在不拆開的情況下兩兩合并,最后變成一個信封,里面裝的錢正好是合并前所有信封金額的總和。

你把信封和膠水分發(fā)給所有租客,把皮夾交給代理人。

到了約定交租的日子,租客把租金放到信封里密封后交給代理人;代理人收齊信封,放到皮夾中,最后得到一個裝滿所有租金的信封,再轉(zhuǎn)交給你;你使用神奇剪刀拆開,拿到租金。

在這個場景中,信封的a、b兩個性質(zhì)其實就是公鑰加密的特性,即使用公鑰加密得到的密文只有掌握私鑰的人能夠解密,并且密文不會泄露明文的語義信息;而c則代表加法同態(tài)的特性,兩個密文可以進(jìn)行計算,得到的結(jié)果解密后正好是兩個原始明文的和。

原理:

paillier加密算法步驟:密鑰生成、加密、解密

1、密鑰生成

1.1 隨機選擇兩個大質(zhì)數(shù)p和q滿足gcd(pq,(p-1)(q-1)) =1。這個屬性保證兩個質(zhì)數(shù)長度相等。

1.2 計算n=pq和λ=lcm(p-1,q-1)

1.3 選擇隨機整數(shù)g(g ∈ Z n 2 ∗ g∈Z_{n^2}^*g∈Zn2∗​),使得滿足n整除g的階。

1.4 公鑰為(N,g)

1.5 私鑰為λ

g c d ( L ( g λ m o d n 2 ) , n ) = 1 gcd(L(g^λ mod n^2),n)=1gcd(L(gλmodn2),n)=1

2、加密

2.1 選擇隨機數(shù)r ∈ Z n r∈Z_nr∈Zn​

2.2 計算密文

c = E ( m , r ) = g m r n m o d n 2 , r ∈ Z n c = E(m,r) = g^m r^n mod n^2 ,r∈Z_nc=E(m,r)=gmrnmodn2,r∈Zn​,其中m為加密信息。

3、解密

m = D ( c , λ ) = ( L ( c λ m o d n 2 ) / L ( g λ m o d n 2 ) ) m o d n , 其 中 L ( u ) = u − 1 / N m= D(c,λ)=(L(c^λ mod n^2)/L(g^λ mod n^2)) mod n,其中 L(u)=u-1/Nm=D(c,λ)=(L(cλmodn2)/L(gλmodn2))modn,其中L(u)=u−1/N 

java實現(xiàn):

package com;
 
/**
 * This program is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation, either version 3 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */
 
import java.math.*;
import java.util.*;
 
/**
 * Paillier Cryptosystem <br>
 * <br>
 * References: <br>
 * [1] Pascal Paillier,
 * "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,"
 * EUROCRYPT'99. URL:
 * <a  rel="external nofollow" >http:
 * //www.gemplus.com/smart/rd/publications/pdf/Pai99pai.pdf</a><br>
 *
 * [2] Paillier cryptosystem from Wikipedia. URL:
 * <a  rel="external nofollow" >http://en.
 * wikipedia.org/wiki/Paillier_cryptosystem</a>
 *
 * @author Kun Liu (kunliu1@cs.umbc.edu)
 * @version 1.0
 */
public class Paillier {
 
 /**
  * p and q are two large primes. lambda = lcm(p-1, q-1) =
  * (p-1)*(q-1)/gcd(p-1, q-1).
  */
 private BigInteger p, q, lambda;
 /**
  * n = p*q, where p and q are two large primes.
  */
 public BigInteger n;
 /**
  * nsquare = n*n
  */
 public BigInteger nsquare;
 /**
  * a random integer in Z*_{n^2} where gcd (L(g^lambda mod n^2), n) = 1.
  */
 private BigInteger g;
 /**
  * number of bits of modulus
  */
 private int bitLength;
 
 /**
  * Constructs an instance of the Paillier cryptosystem.
  *
  * @param bitLengthVal
  *   number of bits of modulus
  * @param certainty
  *   The probability that the new BigInteger represents a prime
  *   number will exceed (1 - 2^(-certainty)). The execution time of
  *   this constructor is proportional to the value of this
  *   parameter.
  */
 public Paillier(int bitLengthVal, int certainty) {
  KeyGeneration(bitLengthVal, certainty);
 }
 
 /**
  * Constructs an instance of the Paillier cryptosystem with 512 bits of
  * modulus and at least 1-2^(-64) certainty of primes generation.
  */
 public Paillier() {
  KeyGeneration(512, 64);
 }
 
 /**
  * Sets up the public key and private key.
  *
  * @param bitLengthVal
  *   number of bits of modulus.
  * @param certainty
  *   The probability that the new BigInteger represents a prime
  *   number will exceed (1 - 2^(-certainty)). The execution time of
  *   this constructor is proportional to the value of this
  *   parameter.
  */
 public void KeyGeneration(int bitLengthVal, int certainty) {
  bitLength = bitLengthVal;
  /*
   * Constructs two randomly generated positive BigIntegers that are
   * probably prime, with the specified bitLength and certainty.
   */
  p = new BigInteger(bitLength / 2, certainty, new Random());
  q = new BigInteger(bitLength / 2, certainty, new Random());
 
  n = p.multiply(q);
  nsquare = n.multiply(n);
 
  g = new BigInteger("2");
  lambda = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE))
    .divide(p.subtract(BigInteger.ONE).gcd(q.subtract(BigInteger.ONE)));
  /* check whether g is good. */
  if (g.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).gcd(n).intValue() != 1) {
   System.out.println("g is not good. Choose g again.");
   System.exit(1);
  }
 }
 
 /**
  * Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function
  * explicitly requires random input r to help with encryption.
  *
  * @param m
  *   plaintext as a BigInteger
  * @param r
  *   random plaintext to help with encryption
  * @return ciphertext as a BigInteger
  */
 public BigInteger Encryption(BigInteger m, BigInteger r) {
  return g.modPow(m, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare);
 }
 
 /**
  * Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function
  * automatically generates random input r (to help with encryption).
  *
  * @param m
  *   plaintext as a BigInteger
  * @return ciphertext as a BigInteger
  */
 public BigInteger Encryption(BigInteger m) {
  BigInteger r = new BigInteger(bitLength, new Random());
  return g.modPow(m, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare);
 
 }
 
 /**
  * Decrypts ciphertext c. plaintext m = L(c^lambda mod n^2) * u mod n, where
  * u = (L(g^lambda mod n^2))^(-1) mod n.
  *
  * @param c
  *   ciphertext as a BigInteger
  * @return plaintext as a BigInteger
  */
 public BigInteger Decryption(BigInteger c) {
  BigInteger u = g.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).modInverse(n);
  return c.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n);
 }
 
 /**
  * sum of (cipher) em1 and em2
  *
  * @param em1
  * @param em2
  * @return
  */
 public BigInteger cipher_add(BigInteger em1, BigInteger em2) {
  return em1.multiply(em2).mod(nsquare);
 }
 
 /**
  * main function
  *
  * @param str
  *   intput string
  */
 public static void main(String[] str) {
  /* instantiating an object of Paillier cryptosystem */
  Paillier paillier = new Paillier();
  /* instantiating two plaintext msgs */
  BigInteger m1 = new BigInteger("20");
  BigInteger m2 = new BigInteger("60");
  /* encryption */
  BigInteger em1 = paillier.Encryption(m1);
  BigInteger em2 = paillier.Encryption(m2);
  /* printout encrypted text */
  System.out.println(em1);
  System.out.println(em2);
  /* printout decrypted text */
  System.out.println(paillier.Decryption(em1).toString());
  System.out.println(paillier.Decryption(em2).toString());
 
  /*
   * test homomorphic properties -> D(E(m1)*E(m2) mod n^2) = (m1 + m2) mod
   * n
   */
  // m1+m2,求明文數(shù)值的和
  BigInteger sum_m1m2 = m1.add(m2).mod(paillier.n);
  System.out.println("original sum: " + sum_m1m2.toString());
  // em1+em2,求密文數(shù)值的乘
  BigInteger product_em1em2 = em1.multiply(em2).mod(paillier.nsquare);
  System.out.println("encrypted sum: " + product_em1em2.toString());
  System.out.println("decrypted sum: " + paillier.Decryption(product_em1em2).toString());
 
  /* test homomorphic properties -> D(E(m1)^m2 mod n^2) = (m1*m2) mod n */
  // m1*m2,求明文數(shù)值的乘
  BigInteger prod_m1m2 = m1.multiply(m2).mod(paillier.n);
  System.out.println("original product: " + prod_m1m2.toString());
  // em1的m2次方,再mod paillier.nsquare
  BigInteger expo_em1m2 = em1.modPow(m2, paillier.nsquare);
  System.out.println("encrypted product: " + expo_em1m2.toString());
  System.out.println("decrypted product: " + paillier.Decryption(expo_em1m2).toString());
 
  //sum test
  System.out.println("--------------------------------");
  Paillier p = new Paillier();
  BigInteger t1 = new BigInteger("21");System.out.println(t1.toString());
  BigInteger t2 = new BigInteger("50");System.out.println(t2.toString());
  BigInteger t3 = new BigInteger("50");System.out.println(t3.toString());
  BigInteger et1 = p.Encryption(t1);System.out.println(et1.toString());
  BigInteger et2 = p.Encryption(t2);System.out.println(et2.toString());
  BigInteger et3 = p.Encryption(t3);System.out.println(et3.toString());
  BigInteger sum = new BigInteger("1");
  sum = p.cipher_add(sum, et1);
  sum = p.cipher_add(sum, et2);
  sum = p.cipher_add(sum, et3);
  System.out.println("sum: "+sum.toString());
  System.out.println("decrypted sum: "+p.Decryption(sum).toString());
  System.out.println("--------------------------------");
 }
}

參考:https://mp.weixin.qq.com/s?__biz=MzA3MTI5Njg4Mw==&mid=2247486135&idx=1&sn=8c9431012aef19bbdefdcd673a783c34&chksm=9f2ef8aba85971bdfb623e8303b103fd70ac2a5ad802668388233ca930d1b0cd77fb02d4b0f2&scene=21#wechat_redirect

https://www.csee.umbc.edu/~kunliu1/research/Paillier.html

總結(jié)

到此這篇關(guān)于java實現(xiàn)同態(tài)加密算法的文章就介紹到這了,更多相關(guān)java同態(tài)加密算法內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

最新評論