PostgreSQL 對IN,EXISTS,ANY/ALL,JOIN的sql優(yōu)化方案
測試環(huán)境:
postgres=# select version(); version --------------------------------------------------------------------------------------------------------- PostgreSQL 11.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39), 64-bit (1 row) postgres=#
數(shù)據(jù)準備:
$ pgbench -i -s 10
postgres=# \d List of relations Schema | Name | Type | Owner --------+------------------+-------+---------- public | pgbench_accounts | table | postgres public | pgbench_branches | table | postgres public | pgbench_history | table | postgres public | pgbench_tellers | table | postgres (4 rows) postgres=# select * from pgbench_accounts limit 1; aid | bid | abalance | filler -----+-----+----------+-------------------------------------------------------------------------------------- 1 | 1 | 0 | (1 row) postgres=# select * from pgbench_branches limit 1; bid | bbalance | filler -----+----------+-------- 1 | 0 | (1 row) postgres=# select * from pgbench_history limit 1; tid | bid | aid | delta | mtime | filler -----+-----+-----+-------+-------+-------- (0 rows) postgres=# select * from pgbench_tellers limit 1; tid | bid | tbalance | filler -----+-----+----------+-------- 1 | 1 | 0 | (1 row) postgres=# select * from pgbench_branches; bid | bbalance | filler -----+----------+-------- 1 | 0 | 2 | 0 | 3 | 0 | 4 | 0 | 5 | 0 | 6 | 0 | 7 | 0 | 8 | 0 | 9 | 0 | 10 | 0 | (10 rows) postgres=# update pgbench_branches set bbalance=4500000 where bid in (4,7); UPDATE 2 postgres=#
IN語句
查詢要求:找出那些余額(balance)大于0的每個分支(branch)在表在pgbench_accounts中有多少個賬戶
1.使用IN子句
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
2.使用ANY子句
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid = ANY ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
3.使用EXISTS子句
SELECT count( aid ),bid FROM pgbench_accounts WHERE EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid ) GROUP BY bid;
4.使用INNER JOIN
SELECT count( aid ),a.bid FROM pgbench_accounts a JOIN pgbench_branches b ON a.bid = b.bid WHERE b.bbalance > 0 GROUP BY a.bid;
在完成這個查詢要求的時候,有人可能會假設exists和inner join性能可能會更好,因為他們可以使用兩表連接的邏輯和優(yōu)化。而IN和ANY子句需要使用子查詢。
然而,PostgreSQL(10版本之后)已經(jīng)智能的足以對上面四種寫法產(chǎn)生相同的執(zhí)行計劃!
所有上面的寫法都會產(chǎn)生相同的執(zhí)行計劃:
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=23327.73..23330.26 rows=10 width=12) (actual time=97.199..99.014 rows=2 loops=1) Group Key: a.bid -> Gather Merge (cost=23327.73..23330.06 rows=20 width=12) (actual time=97.191..99.006 rows=6 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=22327.70..22327.73 rows=10 width=12) (actual time=93.762..93.766 rows=2 loops=3) Sort Key: a.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=22327.44..22327.54 rows=10 width=12) (actual time=93.723..93.727 rows=2 loops=3) Group Key: a.bid -> Hash Join (cost=1.14..22119.10 rows=41667 width=8) (actual time=24.024..83.263 rows=66667 loops=3) Hash Cond: (a.bid = b.bid) -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.023..43.151 rows=333333 loops=3) -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.027..0.028 rows=2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.018..0.020 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.342 ms Execution Time: 99.164 ms (22 rows)
那么,我們是否可以得出這樣的結論:我們可以隨意地編寫查詢,而PostgreSQL的智能將會處理其余的問題?!
等等!
如果我們考慮排除情況,事情會變得不同。
排除查詢
查詢要求:找出那些余額(balance)不大于0的每個分支(branch)在表在pgbench_accounts中有多少個賬戶
1.使用NOT IN
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid NOT IN ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
執(zhí)行計劃:
QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize GroupAggregate (cost=23645.42..23647.95 rows=10 width=12) (actual time=128.606..130.502 rows=8 loops=1) Group Key: pgbench_accounts.bid -> Gather Merge (cost=23645.42..23647.75 rows=20 width=12) (actual time=128.598..130.490 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=22645.39..22645.42 rows=10 width=12) (actual time=124.960..124.963 rows=8 loops=3) Sort Key: pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=22645.13..22645.23 rows=10 width=12) (actual time=124.917..124.920 rows=8 loops=3) Group Key: pgbench_accounts.bid -> Parallel Seq Scan on pgbench_accounts (cost=1.13..21603.46 rows=208333 width=8) (actual time=0.078..83.134 rows=266667 loops=3) Filter: (NOT (hashed SubPlan 1)) Rows Removed by Filter: 66667 SubPlan 1 -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.020..0.021 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.310 ms Execution Time: 130.620 ms (21 rows) postgres=#
2.使用<>ALL
SELECT count( aid ),bid FROM pgbench_accounts WHERE bid <> ALL ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 ) GROUP BY bid;
執(zhí)行計劃:
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=259581.79..259584.32 rows=10 width=12) (actual time=418.220..419.913 rows=8 loops=1) Group Key: pgbench_accounts.bid -> Gather Merge (cost=259581.79..259584.12 rows=20 width=12) (actual time=418.212..419.902 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=258581.76..258581.79 rows=10 width=12) (actual time=413.906..413.909 rows=8 loops=3) Sort Key: pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=258581.50..258581.60 rows=10 width=12) (actual time=413.872..413.875 rows=8 loops=3) Group Key: pgbench_accounts.bid -> Parallel Seq Scan on pgbench_accounts (cost=0.00..257539.83 rows=208333 width=8) (actual time=0.054..367.244 rows=266667 loops=3) Filter: (SubPlan 1) Rows Removed by Filter: 66667 SubPlan 1 -> Materialize (cost=0.00..1.13 rows=1 width=4) (actual time=0.000..0.001 rows=2 loops=1000000) -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.001..0.001 rows=2 loops=337880) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.218 ms Execution Time: 420.035 ms (22 rows) postgres=#
3.使用NOT EXISTS
SELECT count( aid ),bid FROM pgbench_accounts WHERE NOT EXISTS ( SELECT bid FROM pgbench_branches WHERE bbalance > 0 AND pgbench_accounts.bid = pgbench_branches.bid ) GROUP BY bid;
執(zhí)行計劃:
QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------------------------------------- Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=152.024..153.931 rows=8 loops=1) Group Key: pgbench_accounts.bid -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=152.014..153.917 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=147.782..147.786 rows=8 loops=3) Sort Key: pgbench_accounts.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=147.732..147.737 rows=8 loops=3) Group Key: pgbench_accounts.bid -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.134..101.884 rows=266667 loops=3) Hash Cond: (pgbench_accounts.bid = pgbench_branches.bid) -> Parallel Seq Scan on pgbench_accounts (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.032..45.174 rows=333333 loops=3) -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.036..0.037 rows=2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches (cost=0.00..1.12 rows=1 width=4) (actual time=0.025..0.027 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.322 ms Execution Time: 154.040 ms (22 rows) postgres=#
4.使用LEFT JOIN和IS NULL
SELECT count( aid ),a.bid FROM pgbench_accounts a LEFT JOIN pgbench_branches b ON a.bid = b.bid AND b.bbalance > 0 WHERE b.bid IS NULL GROUP BY a.bid;
執(zhí)行計劃:
QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Finalize GroupAggregate (cost=28327.72..28330.25 rows=10 width=12) (actual time=145.298..147.096 rows=8 loops=1) Group Key: a.bid -> Gather Merge (cost=28327.72..28330.05 rows=20 width=12) (actual time=145.288..147.083 rows=24 loops=1) Workers Planned: 2 Workers Launched: 2 -> Sort (cost=27327.70..27327.72 rows=10 width=12) (actual time=141.883..141.887 rows=8 loops=3) Sort Key: a.bid Sort Method: quicksort Memory: 25kB Worker 0: Sort Method: quicksort Memory: 25kB Worker 1: Sort Method: quicksort Memory: 25kB -> Partial HashAggregate (cost=27327.43..27327.53 rows=10 width=12) (actual time=141.842..141.847 rows=8 loops=3) Group Key: a.bid -> Hash Anti Join (cost=1.14..25452.43 rows=375000 width=8) (actual time=0.087..99.535 rows=266667 loops=3) Hash Cond: (a.bid = b.bid) -> Parallel Seq Scan on pgbench_accounts a (cost=0.00..20560.67 rows=416667 width=8) (actual time=0.025..44.337 rows=333333 loops=3) -> Hash (cost=1.12..1.12 rows=1 width=4) (actual time=0.026..0.027 rows=2 loops=3) Buckets: 1024 Batches: 1 Memory Usage: 9kB -> Seq Scan on pgbench_branches b (cost=0.00..1.12 rows=1 width=4) (actual time=0.019..0.020 rows=2 loops=3) Filter: (bbalance > 0) Rows Removed by Filter: 8 Planning Time: 0.231 ms Execution Time: 147.180 ms (22 rows) postgres=#
NOT IN 和 <> ALL生成執(zhí)行計劃都包含了一個子查詢。他們是各自獨立的。
而NOT EXISTS和LEFT JOIN生成了相同的執(zhí)行計劃。
這些hash連接(或hash anti join)是完成查詢要求的最靈活的方式。這也是推薦exists或join的原因。因此,推薦使用exists或join的經(jīng)驗法則是有效的。
但是,我們繼續(xù)往下看! 即使有了子查詢執(zhí)行計劃,NOT IN子句的執(zhí)行時間也會更好?
是的。PostgreSQL做了出色的優(yōu)化,PostgreSQL將子查詢計劃進行了hash處理。因此PostgreSQL對如何處理IN子句有了更好的理解,這是一種邏輯思維方式,因為很多人傾向于使用IN子句。子查詢返回的行很少,但即使子查詢返回幾百行,也會發(fā)生同樣的情況。
但是,如果子查詢返回大量行(幾十萬行)怎么辦?讓我們嘗試一個簡單的測試:
CREATE TABLE t1 AS SELECT * FROM generate_series(0, 500000) id; CREATE TABLE t2 AS SELECT (random() * 4000000)::integer id FROM generate_series(0, 4000000); ANALYZE t1; ANALYZE t2; EXPLAIN SELECT id FROM t1 WHERE id NOT IN (SELECT id FROM t2);
執(zhí)行計劃:
QUERY PLAN -------------------------------------------------------------------------------- Gather (cost=1000.00..15195064853.01 rows=250000 width=4) Workers Planned: 1 -> Parallel Seq Scan on t1 (cost=0.00..15195038853.01 rows=147059 width=4) Filter: (NOT (SubPlan 1)) SubPlan 1 -> Materialize (cost=0.00..93326.01 rows=4000001 width=4) -> Seq Scan on t2 (cost=0.00..57700.01 rows=4000001 width=4) (7 rows) postgres=#
這里,執(zhí)行計劃將子查詢進行了物化。代價評估變成了15195038853.01。(PostgreSQL的默認設置,如果t2表的行低于100k,會將子查詢進行hash)。這樣就會嚴重影響性能。因此,對于那種子查詢返回的行數(shù)很少的場景,IN子句可以起到很好的作用。
其它注意點
有的!在我們用不同的方式寫查詢的時候,可能有數(shù)據(jù)類型的轉換。
比如,語句:
EXPLAIN ANALYZE SELECT * FROM emp WHERE gen = ANY(ARRAY['M', 'F']);
就會發(fā)生隱式的類型轉換:
Seq Scan on emp (cost=0.00..1.04 rows=2 width=43) (actual time=0.023..0.026 rows=3 loops=1) Filter: ((gen)::text = ANY ('{M,F}'::text[]))
這里的(gen)::text就發(fā)生了類型轉換。如果在大表上,這種類型轉換的代價會很高,因此,PostgreSQL對IN子句做了更好的處理。
EXPLAIN ANALYZE SELECT * FROM emp WHERE gen IN ('M','F'); Seq Scan on emp (cost=0.00..1.04 rows=3 width=43) (actual time=0.030..0.034 rows=3 loops=1) Filter: (gen = ANY ('{M,F}'::bpchar[]))
將IN子句轉換成了ANY子句,沒有對gen列進行類型轉換。而是將M\F轉成了bpchar(內部等價于char)
總結
簡單來說,exists和直接join表通常比較好。
很多情況下,PostgreSQL將IN子句換成被hash的子計劃。在一些特殊場景下,IN可以獲得更好的執(zhí)行計劃。
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
相關文章
PostgreSQL創(chuàng)建新用戶所遇見的權限問題以及解決辦法
這篇文章主要給大家介紹了關于PostgreSQL創(chuàng)建新用戶所遇見的權限問題以及解決辦法, 在PostgreSQL中創(chuàng)建一個新用戶非常簡單,但可能會遇到權限問題,需要的朋友可以參考下2023-09-09PostgreSQL對GROUP BY子句使用常量的特殊限制詳解
這篇文章主要介紹了PostgreSQL對GROUP BY子句使用常量的特殊限制詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-02-02Visual Studio Code(VS Code)查詢PostgreSQL拓展安裝教程圖解
這篇文章主要介紹了Visual Studio Code(VS Code)查詢PostgreSQL拓展安裝教程,本文通過圖文并茂的形式給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2021-01-01pgsql之create user與create role的區(qū)別介紹
這篇文章主要介紹了pgsql之create user與create role的區(qū)別介紹,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-01-01Postgresql 查看SQL語句執(zhí)行效率的操作
這篇文章主要介紹了Postgresql 查看SQL語句執(zhí)行效率的操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-02-02對PostgreSQL中的慢查詢進行分析和優(yōu)化的操作指南
在數(shù)據(jù)庫的世界里,慢查詢就像是路上的絆腳石,讓數(shù)據(jù)處理的道路變得崎嶇不平,想象一下,你正在高速公路上飛馳,突然遇到一堆減速帶,那感覺肯定糟透了,本文介紹了怎樣對?PostgreSQL?中的慢查詢進行分析和優(yōu)化,需要的朋友可以參考下2024-07-07