PostgreSQL模糊匹配走索引的操作
場景 lower(name) like 'pf%'
create table users (id int primary key, name varchar(255)); Create or replace function random_string(length integer) returns text as $$ declare chars text[] := '{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}'; result text := ''; i integer := 0; begin if length < 0 then raise exception 'Given length cannot be less than 0'; end if; for i in 1..length loop result := result || chars[1+random()*(array_length(chars, 1)-1)]; end loop; return result; end; $$ language plpgsql; insert into users values(generate_series(1,50000), random_string(15));
普通bt:不走索引
pg_trgm模塊提供函數(shù)和操作符測定字母數(shù)字文本基于三元模型匹配的相似性,還有支持快速搜索相似字符串的索引操作符類。三元模型是一組從一個字符串中獲得的三個連續(xù)的字符。我們可以通過計數(shù)兩個字符串共享的三元模型的數(shù)量來測量它們的相似性。這個簡單的想法證明在測量許多自然語言詞匯的相似性時是非常有效的。
CREATE INDEX users_idx0 ON users (name);
全字匹配查詢(走索引)
explain select * from users where name='pfDNQVmhqDrF1EY'; QUERY PLAN ------------------------------------------------------------------------- Index Scan using users_idx0 on users (cost=0.29..8.31 rows=1 width=20) Index Cond: ((name)::text = 'pfDNQVmhqDrF1EY'::text) (2 rows)
加函數(shù)全字匹配(不走索引)
explain select * from users where lower(name)='pfDNQVmhqDrF1EY'; QUERY PLAN ----------------------------------------------------------- Seq Scan on users (cost=0.00..1069.00 rows=250 width=20) Filter: (lower((name)::text) = 'pfDNQVmhqDrF1EY'::text) (2 rows)
模糊匹配(不走索引)
explain select * from users where name like 'pf%'; QUERY PLAN -------------------------------------------------------- Seq Scan on users (cost=0.00..944.00 rows=5 width=20) Filter: ((name)::text ~~ 'pf%'::text)
explain select * from users where name like 'pf_'; QUERY PLAN -------------------------------------------------------- Seq Scan on users (cost=0.00..944.00 rows=5 width=20) Filter: ((name)::text ~~ 'pf_'::text)
字段帶函數(shù)的bt索引:函數(shù)走索引
drop index users_idx0; CREATE INDEX users_dex1 ON users (lower(name));
加函數(shù)全字匹配(走索引)
explain select * from users where lower(name)='pfDNQVmhqDrF1EY'; QUERY PLAN --------------------------------------------------------------------------- Bitmap Heap Scan on users (cost=6.23..324.34 rows=250 width=20) Recheck Cond: (lower((name)::text) = 'pfDNQVmhqDrF1EY'::text) -> Bitmap Index Scan on users_dex1 (cost=0.00..6.17 rows=250 width=0) Index Cond: (lower((name)::text) = 'pfDNQVmhqDrF1EY'::text) (4 rows)
模糊匹配(不走索引)
explain select * from users where lower(name) like 'pf%'; QUERY PLAN ----------------------------------------------------------- Seq Scan on users (cost=0.00..1069.00 rows=250 width=20) Filter: (lower((name)::text) ~~ 'pf%'::text) (2 rows)
聲明操作符類的bt索引:like走索引
定義索引的同時可以為索引的每個字段聲明一個操作符類。
CREATE INDEX name ON table (column opclass [sort options] [, …]);
這個操作符類指明該索引用于該字段時要使用的操作符。
CREATE INDEX users_dex2 ON users (lower(name) varchar_pattern_ops);
模糊匹配(走索引)
explain select * from users where lower(name) like 'pf%'; QUERY PLAN ------------------------------------------------------------------------------------------------------ Bitmap Heap Scan on users (cost=4.82..144.00 rows=5 width=20) Filter: (lower((name)::text) ~~ 'pf%'::text) -> Bitmap Index Scan on users_dex2 (cost=0.00..4.82 rows=53 width=0) Index Cond: ((lower((name)::text) ~>=~ 'pf'::text) AND (lower((name)::text) ~<~ 'pg'::text)) (4 rows)
場景2 name like '%pf%'
Create or replace function random_string(length integer) returns text as $$ declare chars text[] := '{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}'; result text := ''; i integer := 0; begin if length < 0 then raise exception 'Given length cannot be less than 0'; end if; for i in 1..length loop result := result || chars[1+random()*(array_length(chars, 1)-1)]; end loop; return result; end; $$ language plpgsql; create table users (id int primary key, name varchar(255)); insert into users values(generate_series(1,50000), random_string(15));
聲明操作符bt:不走索引
CREATE INDEX idx_name ON users USING btree (lower(name) varchar_pattern_ops);
explain (analyze true,format yaml, verbose true, buffers true) select * from users where lower(name) like '%pf%';\ QUERY PLAN ----------------------------------------------------------- - Plan: + Node Type: "Seq Scan" + Parallel Aware: false + Relation Name: "users" + Schema: "public" + Alias: "users" + Startup Cost: 0.00 + Total Cost: 1069.00 + Plan Rows: 5 + Plan Width: 20 + Actual Startup Time: 0.320 + Actual Total Time: 86.841 + Actual Rows: 710 + Actual Loops: 1 + Output: + - "id" + - "name" + Filter: "(lower((users.name)::text) ~~ '%pf%'::text)"+ Rows Removed by Filter: 49290 + Shared Hit Blocks: 319 + Shared Read Blocks: 0 + Shared Dirtied Blocks: 0 + Shared Written Blocks: 0 + Local Hit Blocks: 0 + Local Read Blocks: 0 + Local Dirtied Blocks: 0 + Local Written Blocks: 0 + Temp Read Blocks: 0 + Temp Written Blocks: 0 + Planning Time: 0.188 + Triggers: + Execution Time: 86.975
聲明pg_trgm操作符bt:可以走索引
CREATE EXTENSION pg_trgm; CREATE INDEX idx_users_name_trgm_gist ON users USING gist (name gist_trgm_ops);
explain (analyze true, verbose true, buffers true) select * from users where name like '%pf%'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------ Bitmap Heap Scan on public.users (cost=32.19..371.08 rows=505 width=20) (actual time=19.314..53.132 rows=193 loops=1) Output: id, name Recheck Cond: ((users.name)::text ~~ '%pf%'::text) Rows Removed by Index Recheck: 49807 Heap Blocks: exact=319 Buffers: shared hit=972 -> Bitmap Index Scan on idx_users_name_trgm_gist (cost=0.00..32.06 rows=505 width=0) (actual time=19.175..19.175 rows=50000 loops=1) Index Cond: ((users.name)::text ~~ '%pf%'::text) Buffers: shared hit=653 Planning time: 0.188 ms Execution time: 53.231 ms (11 rows)
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
相關(guān)文章
使用postgresql 模擬批量數(shù)據(jù)插入的案例
這篇文章主要介紹了使用postgresql 模擬批量數(shù)據(jù)插入的案例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-01-01Postgresql 動態(tài)統(tǒng)計某一列的某一值出現(xiàn)的次數(shù)實例
這篇文章主要介紹了Postgresql 動態(tài)統(tǒng)計某一列的某一值出現(xiàn)的次數(shù)實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-01-01PostgreSQL 數(shù)據(jù)同步到ES 搭建操作
這篇文章主要介紹了PostgreSQL 數(shù)據(jù)同步到ES 搭建操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-01-01postgresql 刪除重復(fù)數(shù)據(jù)案例詳解
這篇文章主要介紹了postgresql 刪除重復(fù)數(shù)據(jù)案例詳解,本篇文章通過簡要的案例,講解了該項技術(shù)的了解與使用,以下就是詳細(xì)內(nèi)容,需要的朋友可以參考下2021-08-08詳解如何在PostgreSQL中使用JSON數(shù)據(jù)類型
JSON(JavaScript Object Notation)是一種輕量級的數(shù)據(jù)交換格式,它采用鍵值對的形式來表示數(shù)據(jù),支持多種數(shù)據(jù)類型,本文給大家介紹了如何在PostgreSQL中使用JSON數(shù)據(jù)類型,需要的朋友可以參考下2024-03-03玩轉(zhuǎn)PostgreSQL之30個實用SQL語句
本文主要整理總結(jié)了30個實用SQL,方便大家可以高效利用PostgreSQL,需要的朋友可以參考下2022-11-11