Java開發(fā)工具-scala處理json格式利器-json4s詳解
1.為什么是json4s
從json4s的官方描述
At this moment there are at least 6 json libraries for scala, not counting the java json libraries. All these libraries have a very similar AST. This project aims to provide a single AST to be used by other scala json libraries.
At this moment the approach taken to working with the AST has been taken from lift-json and the native package is in fact lift-json but outside of the lift project.
在scala庫中,至少有6個(gè)json庫,并且不包括 java的json庫,這些庫都有著類似的抽象語法樹AST,json4s的目的就是為了使用簡(jiǎn)單的一種語法支持這些json庫,因此說json4s可以說是一種json的規(guī)范處理,配合scala開發(fā)過程中極其簡(jiǎn)介的語法特性,可以輕松地實(shí)現(xiàn)比如json合并,json的diff操作,可以方便地處理jsonArray的字符串,所以如果使用scala,那么json4s一定不能錯(cuò)過,在實(shí)際場(chǎng)景下使用json處理數(shù)據(jù)很常見,比如spark開發(fā)中處理原始json數(shù)據(jù)等等,開始上手可能看起來比較復(fù)雜,但是用起來你會(huì)很爽。
2.json4s的數(shù)據(jù)結(jié)構(gòu)
json4s包括10個(gè)類型和一個(gè)type類型的對(duì)象,分別如下
case object JNothing extends JValue // 'zero' for JValue case object JNull extends JValue case class JString(s: String) extends JValue case class JDouble(num: Double) extends JValue case class JDecimal(num: BigDecimal) extends JValue case class JInt(num: BigInt) extends JValue case class JLong(num: Long) extends JValue case class JBool(value: Boolean) extends JValue case class JObject(obj: List[JField]) extends JValue case class JArray(arr: List[JValue]) extends JValue type JField = (String, JValue)
可以看到,他們都繼承自JValue,JValue是json4s里面類似于java的object地位,而JField是用來一次性匹配json的key,value對(duì)而準(zhǔn)備的。
3.json4s的實(shí)踐
下面來看,我們?nèi)绾蝸硎褂胘son4s
<dependency> <groupId>org.json4s</groupId> <artifactId>json4s-native_2.11</artifactId> <version>3.7.0-M6</version> </dependency>
看下面的代碼即可,注釋寫的比較清晰,一般來說json的使用無外乎是字符串到對(duì)象或者對(duì)象到字符串,而字符串到對(duì)象可以用case class 也可以用原始的比如上面提到的類
package com.hoult.scala.json4s import org.json4s._ import org.json4s.JsonDSL._ import org.json4s.native.JsonMethods._ object Demo1 { def main(args: Array[String]): Unit = { //parse方法表示從字符串到j(luò)son-object val person = parse( """ |{"name":"Toy","price":35.35} |""".stripMargin, useBigDecimalForDouble = true) // 1.模式匹配提取, \表示提取 val JString(name) = (person \ "name") println(name) // 2.extract[String]取值 // implicit val formats = org.json4s.Formats implicit val formats = DefaultFormats val name2 = (person \ "name").extract[String] val name3 = (person \ "name").extractOpt[String] val name4 = (person \ "name").extractOrElse("") // 3.多層嵌套取值 val parseJson: JValue = parse( """ |{"name":{"tome":"new"},"price":35.35} |""".stripMargin, useBigDecimalForDouble = true) //3.1 逐層訪問 val value = (parseJson \ "name" \ "tome").extract[String] //3.2 循環(huán)訪問 val value2 = (parseJson \\ "tome") println(value2) //4.嵌套json串解析 val json = parse( """ { "name": "joe", "children": [ { "name": "Mary", "age": 20 }, { "name": "Mazy", "age": 10 } ] } """) // println(json \ "children") //模式匹配 for (JArray(child) <- json) println(child) //提取object 下 某字段的值 val ages = for { JObject(child) <- json JField("age", JInt(age)) <- child } yield age println(ages) // 嵌套取數(shù)組中某個(gè)字段值,并添加過濾 val nameAges = for { JObject(child) <- json JField("name", JString(name)) <- child JField("age", JInt(age)) <- child if age > 10 } yield (name, age) println(nameAges) // 5.json和對(duì)象的轉(zhuǎn)換,[就是json數(shù)組] case class ClassA(a: Int, b: Int) val json2: String = """[{"a":1,"b":2},{"a":1,"b":2}]""" val bb: List[ClassA] = parse(json2).extract[List[ClassA]] println(bb) // 6.json轉(zhuǎn)對(duì)象,[json 非json數(shù)組,但是每個(gè)級(jí)別要明確] case class ClassC(a: Int, b: Int) case class ClassB(c: List[ClassC]) val json3: String = """{"c":[{"a":1,"b":2},{"a":1,"b":2}]}""" val cc: ClassB = parse(json3).extract[ClassB] println(cc) // 7.使用org.json4s產(chǎn)生json字符串 // import org.json4s.JsonDSL._ val json1 = List(1, 2, 3) val jsonMap = ("name" -> "joe") val jsonUnion = ("name" -> "joe") ~ ("age" -> 10) val jsonOpt = ("name" -> "joe") ~ ("age" -> Some(1)) val jsonOpt2 = ("name" -> "joe") ~ ("age" -> (None: Option[Int])) case class Winner(id: Long, numbers: List[Int]) case class Lotto(id: Long, winningNumbers: List[Int], winners: List[Winner], drawDate: Option[java.util.Date]) val winners = List(Winner(10, List(1, 2, 5)), Winner(11, List(1, 2, 0))) val lotto = Lotto(11, List(1, 2, 5), winners, None) val jsonCase = ("lotto" -> ("lotto-id" -> lotto.id) ~ ("winning-numbers" -> lotto.winningNumbers) ~ ("draw-date" -> lotto.drawDate.map(_.toString)) ~ ("winners" -> lotto.winners.map { w => (("winner-id" -> w.id) ~ ("numbers" -> w.numbers))})) println(compact(render(json1))) println(compact(render(jsonMap))) println(compact(render(jsonUnion))) println(compact(render(jsonOpt))) println(compact(render(jsonOpt2))) println(compact(render(jsonCase))) // 8.json格式化 println(pretty(render(jsonCase))) // 9.合并字符串 val lotto1 = parse("""{ "lotto":{ "lotto-id": 1, "winning-numbers":[7,8,9], "winners":[{ "winner-id": 1, "numbers":[7,8,9] }] } }""") val lotto2 = parse("""{ "lotto":{ "winners":[{ "winner-id": 2, "numbers":[1,23,5] }] } }""") val mergedLotto = lotto1 merge lotto2 // println(pretty(render(mergedLotto))) // 10.字符串尋找差異 val Diff(changed, added, deleted) = mergedLotto diff lotto1 println(changed) println(added) println(deleted) val json10 = parse( """ """) println("********8") println(json10) for (JObject(j) <- json10) println(j) println("********11") // 11.遍歷json,使用for // key1 values key1_vk1:v1 .... val str = "{\"tag_name\":\"t_transaction_again_day\",\"tag_distribute_json\":\"{\\\"1\\\":\\\"0.0011231395\\\",\\\"0\\\":\\\"0.9988768605\\\"}\"}" val valueJson = parse(str) \ "tag_distribute_json" println(valueJson) for { JString(obj) <- valueJson JObject(dlist) <- parse(obj) (key, JString(value))<- dlist } { println(key + "::" + value) // val kvList = for (JObject(key, value) <- parse(obj)) yield (key, value) // println("obj : " + kvList.mkString(",")) } } }
4.注意
4.1 compact 和 render的使用
常用寫法compact(render(json))
,用來把一個(gè)json對(duì)象轉(zhuǎn)成字符串,并壓縮顯示,當(dāng)然也可以用prety(render(json))
4.2 序列化時(shí)候需要一個(gè)隱式對(duì)象
例如下面的
implicit val formats = Serialization.formats(NoTypeHints)
參考
https://github.com/json4s/json4s/tree/v.3.2.0_scala2.10
https://www.cnblogs.com/yyy-blog/p/11819302.html
https://www.shuzhiduo.com/A/Vx5MBVOYdN/
https://segmentfault.com/a/1190000007302496
https://www.coder.work/article/6786418
https://www.wolai.com/sTVar6XXjpuM9ANFn2sx9n
https://www.wolai.com/sTVar6XXjpuM9ANFn2sx9n
到此這篇關(guān)于開發(fā)工具-scala處理json格式利器-json4s的文章就介紹到這了,更多相關(guān)scala處理json格式利器-json4s內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
SpringBoot使用SchedulingConfigurer實(shí)現(xiàn)多個(gè)定時(shí)任務(wù)多機(jī)器部署問題(推薦)
這篇文章主要介紹了SpringBoot使用SchedulingConfigurer實(shí)現(xiàn)多個(gè)定時(shí)任務(wù)多機(jī)器部署問題,定時(shí)任務(wù)多機(jī)器部署解決方案,方式一拆分,單獨(dú)拆分出來,單獨(dú)跑一個(gè)應(yīng)用,方式二是基于aop攔截處理(搶占執(zhí)行),只要有一個(gè)執(zhí)行,其它都不執(zhí)行,需要的朋友可以參考下2023-01-01Java利用IO流實(shí)現(xiàn)簡(jiǎn)易的記事本功能
本文將利用Java中IO流編寫一個(gè)模擬日記本的程序,通過在控制臺(tái)輸入指令,實(shí)現(xiàn)在本地新建文件,打開日記本和修改日記本等功能,感興趣的可以了解一下2022-05-05Mybatis超級(jí)強(qiáng)大的動(dòng)態(tài)SQL語句大全
MyBatis的動(dòng)態(tài)SQL是基于OGNL表達(dá)式的,它可以幫助我們方便的在SQL語句中實(shí)現(xiàn)某些邏輯,下面這篇文章主要給大家介紹了關(guān)于Mybatis超級(jí)強(qiáng)大的動(dòng)態(tài)SQL語句的相關(guān)資料,需要的朋友可以參考下2022-05-05Mybatis結(jié)果生成鍵值對(duì)的實(shí)例代碼
這篇文章主要介紹了Mybatis結(jié)果生成鍵值對(duì)的實(shí)例代碼,以及MyBatis返回Map鍵值對(duì)數(shù)據(jù)的實(shí)現(xiàn)方法,非常不錯(cuò),具有參考借鑒價(jià)值,需要的的朋友參考下2017-02-02logstash將mysql數(shù)據(jù)同步到elasticsearch方法詳解
這篇文章主要為大家介紹了logstash將mysql數(shù)據(jù)同步到elasticsearch方法詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-12-12JavaWeb?使用DBUtils實(shí)現(xiàn)增刪改查方式
這篇文章主要介紹了JavaWeb?使用DBUtils實(shí)現(xiàn)增刪改查方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2021-12-12