詳解SpringCloud的負(fù)載均衡
一.什么是負(fù)載均衡
負(fù)載均衡(Load-balance LB),指的是將用戶的請(qǐng)求平攤分配到各個(gè)服務(wù)器上,從而達(dá)到系統(tǒng)的高可用。常見的負(fù)載均衡軟件有Nginx、lvs等。
二.負(fù)載均衡的簡(jiǎn)單分類
1)集中式LB:集中式負(fù)載均衡指的是,在服務(wù)消費(fèi)者(client)和服務(wù)提供者(provider)之間提供負(fù)載均衡設(shè)施,通過(guò)該設(shè)施把消費(fèi)者(client)的請(qǐng)求通過(guò)某種策略轉(zhuǎn)發(fā)給服務(wù)提供者(provider),常見的集中式負(fù)載均衡是Nginx;
2)進(jìn)程式LB:將負(fù)載均衡的邏輯集成到消費(fèi)者(client)身上,即消費(fèi)者從服務(wù)注冊(cè)中心獲取服務(wù)列表,獲知有哪些地址可用,再?gòu)倪@些地址里選出合適的服務(wù)器,springCloud的Ribbon就是一個(gè)進(jìn)程式的負(fù)載均衡工具。
三.為什么需要做負(fù)載均衡
1) 不做負(fù)載均衡,可能導(dǎo)致某臺(tái)機(jī)子負(fù)荷太重而掛掉;
2)導(dǎo)致資源浪費(fèi),比如某些機(jī)子收到太多的請(qǐng)求,肯定會(huì)導(dǎo)致某些機(jī)子收到很少請(qǐng)求甚至收不到請(qǐng)求,這樣會(huì)浪費(fèi)系統(tǒng)資源。
四.springCloud如何開啟負(fù)載均衡
1)在消費(fèi)者子工程的pom.xml文件的加入相關(guān)依賴(https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon/1.4.7.RELEASE);
<!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-ribbon --> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-ribbon</artifactId> <version>1.4.7.RELEASE</version> </dependency>
消費(fèi)者需要獲取服務(wù)注冊(cè)中心的注冊(cè)列表信息,把Eureka的依賴包也放進(jìn)pom.xml
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-eureka-server</artifactId> <version>1.4.7.RELEASE</version> </dependency>
2)在application.yml里配置服務(wù)注冊(cè)中心的信息
在該消費(fèi)者(client)的application.yml里配置Eureka的信息
#配置Eureka eureka: client: #是否注冊(cè)自己到服務(wù)注冊(cè)中心,消費(fèi)者不用提供服務(wù) register-with-eureka: false service-url: #訪問(wèn)的url defaultZone: http://localhost:8002/eureka/
3)在消費(fèi)者啟動(dòng)類上面加上注解@EnableEurekaClient
@EnableEurekaClient
4)在配置文件的Bean上加上
@Bean @LoadBalanced public RestTemplate getRestTemplate(){ return new RestTemplate(); }
五.IRule
什么是IRule
IRule接口代表負(fù)載均衡的策略,它的不同的實(shí)現(xiàn)類代表不同的策略,它的四種實(shí)現(xiàn)類和它的關(guān)系如下()
說(shuō)明一下(idea找Irule的方法:ctrl+n 填入IRule進(jìn)行查找)
1.RandomRule:表示隨機(jī)策略,它將從服務(wù)清單中隨機(jī)選擇一個(gè)服務(wù);
public class RandomRule extends AbstractLoadBalancerRule { public RandomRule() { } @SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"}) //傳入一個(gè)負(fù)載均衡器 public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { return null; } else { Server server = null; while(server == null) { if (Thread.interrupted()) { return null; } //通過(guò)負(fù)載均衡器獲取對(duì)應(yīng)的服務(wù)列表 List<Server> upList = lb.getReachableServers(); //通過(guò)負(fù)載均衡器獲取全部服務(wù)列表 List<Server> allList = lb.getAllServers(); int serverCount = allList.size(); if (serverCount == 0) { return null; } //獲取一個(gè)隨機(jī)數(shù) int index = this.chooseRandomInt(serverCount); //通過(guò)這個(gè)隨機(jī)數(shù)從列表里獲取服務(wù) server = (Server)upList.get(index); if (server == null) { //當(dāng)前線程轉(zhuǎn)為就緒狀態(tài),讓出cpu Thread.yield(); } else { if (server.isAlive()) { return server; } server = null; Thread.yield(); } } return server; } }
小結(jié):通過(guò)獲取到的所有服務(wù)的數(shù)量,以這個(gè)數(shù)量為標(biāo)準(zhǔn)獲取一個(gè)(0,服務(wù)數(shù)量)的數(shù)作為獲取服務(wù)實(shí)例的下標(biāo),從而獲取到服務(wù)實(shí)例
2.ClientConfigEnabledRoundRobinRule:ClientConfigEnabledRoundRobinRule并沒有實(shí)現(xiàn)什么特殊的處理邏輯,但是他的子類可以實(shí)現(xiàn)一些高級(jí)策略, 當(dāng)一些本身的策略無(wú)法實(shí)現(xiàn)某些需求的時(shí)候,它也可以做為父類幫助實(shí)現(xiàn)某些策略,一般情況下我們都不會(huì)使用它;
public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule { //使用“4”中的RoundRobinRule策略 RoundRobinRule roundRobinRule = new RoundRobinRule(); public ClientConfigEnabledRoundRobinRule() { } public void initWithNiwsConfig(IClientConfig clientConfig) { this.roundRobinRule = new RoundRobinRule(); } public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); this.roundRobinRule.setLoadBalancer(lb); } public Server choose(Object key) { if (this.roundRobinRule != null) { return this.roundRobinRule.choose(key); } else { throw new IllegalArgumentException("This class has not been initialized with the RoundRobinRule class"); } } }
小結(jié):用來(lái)作為父類,子類通過(guò)實(shí)現(xiàn)它來(lái)實(shí)現(xiàn)一些高級(jí)負(fù)載均衡策略
1)ClientConfigEnabledRoundRobinRule的子類BestAvailableRule:從該策略的名字就可以知道,bestAvailable的意思是最好獲取的,該策略的作用是獲取到最空閑的服務(wù)實(shí)例;
public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule { //注入負(fù)載均衡器,它可以選擇服務(wù)實(shí)例 private LoadBalancerStats loadBalancerStats; public BestAvailableRule() { } public Server choose(Object key) { //假如負(fù)載均衡器實(shí)例為空,采用它父類的負(fù)載均衡機(jī)制,也就是輪詢機(jī)制,因?yàn)樗母割惒捎玫木褪禽喸儥C(jī)制 if (this.loadBalancerStats == null) { return super.choose(key); } else { //獲取所有服務(wù)實(shí)例并放入列表里 List<Server> serverList = this.getLoadBalancer().getAllServers(); //并發(fā)量 int minimalConcurrentConnections = 2147483647; long currentTime = System.currentTimeMillis(); Server chosen = null; Iterator var7 = serverList.iterator(); //遍歷服務(wù)列表 while(var7.hasNext()) { Server server = (Server)var7.next(); ServerStats serverStats = this.loadBalancerStats.getSingleServerStat(server); //淘汰掉已經(jīng)負(fù)載的服務(wù)實(shí)例 if (!serverStats.isCircuitBreakerTripped(currentTime)) { //獲得當(dāng)前服務(wù)的請(qǐng)求量(并發(fā)量) int concurrentConnections = serverStats.getActiveRequestsCount(currentTime); //找出并發(fā)了最小的服務(wù) if (concurrentConnections < minimalConcurrentConnections) { minimalConcurrentConnections = concurrentConnections; chosen = server; } } } if (chosen == null) { return super.choose(key); } else { return chosen; } } } public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); if (lb instanceof AbstractLoadBalancer) { this.loadBalancerStats = ((AbstractLoadBalancer)lb).getLoadBalancerStats(); } } }
小結(jié):ClientConfigEnabledRoundRobinRule子類之一,獲取到并發(fā)了最少的服務(wù)
2)ClientConfigEnabledRoundRobinRule的另一個(gè)子類是PredicateBasedRule:通過(guò)源碼可以看出它是一個(gè)抽象類,它的抽象方法getPredicate()返回一個(gè)AbstractServerPredicate的實(shí)例,然后它的choose方法調(diào)用AbstractServerPredicate類的chooseRoundRobinAfterFiltering方法獲取具體的Server實(shí)例并返回
public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule { public PredicateBasedRule() { } //獲取AbstractServerPredicate對(duì)象 public abstract AbstractServerPredicate getPredicate(); public Server choose(Object key) { //獲取當(dāng)前策略的負(fù)載均衡器 ILoadBalancer lb = this.getLoadBalancer(); //通過(guò)AbstractServerPredicate的子類過(guò)濾掉一部分實(shí)例(它實(shí)現(xiàn)了Predicate) //以輪詢的方式從過(guò)濾后的服務(wù)里選擇一個(gè)服務(wù) Optional<Server> server = this.getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key); return server.isPresent() ? (Server)server.get() : null; } }
再看看它的chooseRoundRobinAfterFiltering()方法是如何實(shí)現(xiàn)的
public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) { List<Server> eligible = this.getEligibleServers(servers, loadBalancerKey); return eligible.size() == 0 ? Optional.absent() : Optional.of(eligible.get(this.incrementAndGetModulo(eligible.size()))); }
是這樣的,先通過(guò)this.getEligibleServers(servers, loadBalancerKey)方法獲取一部分實(shí)例,然后判斷這部分實(shí)例是否為空,如果不為空則調(diào)用eligible.get(this.incrementAndGetModulo(eligible.size())方法從這部分實(shí)例里獲取一個(gè)服務(wù),點(diǎn)進(jìn)this.getEligibleServers看
public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) { if (loadBalancerKey == null) { return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate())); } else { List<Server> results = Lists.newArrayList(); Iterator var4 = servers.iterator(); while(var4.hasNext()) { Server server = (Server)var4.next(); //條件滿足 if (this.apply(new PredicateKey(loadBalancerKey, server))) { //添加到集合里 results.add(server); } } return results; } }
getEligibleServers方法是根據(jù)this.apply(new PredicateKey(loadBalancerKey, server))進(jìn)行過(guò)濾的,如果滿足,就添加到返回的集合中。符合什么條件才可以進(jìn)行過(guò)濾呢?可以發(fā)現(xiàn),apply是用this調(diào)用的,this指的是AbstractServerPredicate(它的類對(duì)象),但是,該類是個(gè)抽象類,該實(shí)例是不存在的,需要子類去實(shí)現(xiàn),它的子類在這里暫時(shí)不是看了,以后有空再深入學(xué)習(xí)下,它的子類如下,實(shí)現(xiàn)哪個(gè)子類,就用什么 方式過(guò)濾。
再回到chooseRoundRobinAfterFiltering()方法,剛剛說(shuō)完它通過(guò) getEligibleServers方法過(guò)濾并獲取到一部分實(shí)例,然后再通過(guò)this.incrementAndGetModulo(eligible.size())方法從這部分實(shí)例里選擇一個(gè)實(shí)例返回,該方法的意思是直接返回下一個(gè)整數(shù)(索引值),通過(guò)該索引值從返回的實(shí)例列表中取得Server實(shí)例。
private int incrementAndGetModulo(int modulo) { //當(dāng)前下標(biāo) int current; //下一個(gè)下標(biāo) int next; do { //獲得當(dāng)前下標(biāo)值 current = this.nextIndex.get(); next = (current + 1) % modulo; } while(!this.nextIndex.compareAndSet(current, next) || current >= modulo); return current; }
源碼擼明白了,再來(lái)理一下chooseRoundRobinAfterFiltering()的思路:先通過(guò)getEligibleServers()方法獲得一部分服務(wù)實(shí)例,再?gòu)倪@部分服務(wù)實(shí)例里拿到當(dāng)前服務(wù)實(shí)例的下一個(gè)服務(wù)對(duì)象使用。
小結(jié):通過(guò)AbstractServerPredicate的chooseRoundRobinAfterFiltering方法進(jìn)行過(guò)濾,獲取備選的服務(wù)實(shí)例清單,然后用線性輪詢選擇一個(gè)實(shí)例,是一個(gè)抽象類,過(guò)濾策略在AbstractServerPredicate的子類中具體實(shí)現(xiàn)
3.RetryRule:是對(duì)選定的負(fù)載均衡策略加上重試機(jī)制,即在一個(gè)配置好的時(shí)間段內(nèi)(默認(rèn)500ms),當(dāng)選擇實(shí)例不成功,則一直嘗試使用subRule的方式選擇一個(gè)可用的實(shí)例,在調(diào)用時(shí)間到達(dá)閥值的時(shí)候還沒找到可用服務(wù),則返回空,如果沒有配置負(fù)載策略,默認(rèn)輪詢(即“4”中的輪詢);
先貼上它的源碼
public class RetryRule extends AbstractLoadBalancerRule { //從這可以看出,默認(rèn)使用輪詢機(jī)制 IRule subRule = new RoundRobinRule(); //500秒的閥值 long maxRetryMillis = 500L; //無(wú)參構(gòu)造函數(shù) public RetryRule() { } //使用輪詢機(jī)制 public RetryRule(IRule subRule) { this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule()); } public RetryRule(IRule subRule, long maxRetryMillis) { this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule()); this.maxRetryMillis = maxRetryMillis > 0L ? maxRetryMillis : 500L; } public void setRule(IRule subRule) { this.subRule = (IRule)(subRule != null ? subRule : new RoundRobinRule()); } public IRule getRule() { return this.subRule; } //設(shè)置最大耗時(shí)時(shí)間(閥值),最多重試多久 public void setMaxRetryMillis(long maxRetryMillis) { if (maxRetryMillis > 0L) { this.maxRetryMillis = maxRetryMillis; } else { this.maxRetryMillis = 500L; } } //獲取重試的時(shí)間 public long getMaxRetryMillis() { return this.maxRetryMillis; } //設(shè)置負(fù)載均衡器,用以獲取服務(wù) public void setLoadBalancer(ILoadBalancer lb) { super.setLoadBalancer(lb); this.subRule.setLoadBalancer(lb); } //通過(guò)負(fù)載均衡器選擇服務(wù) public Server choose(ILoadBalancer lb, Object key) { long requestTime = System.currentTimeMillis(); //當(dāng)前時(shí)間+閥值 = 截止時(shí)間 long deadline = requestTime + this.maxRetryMillis; Server answer = null; answer = this.subRule.choose(key); //獲取到服務(wù)直接返回 if ((answer == null || !answer.isAlive()) && System.currentTimeMillis() < deadline) { InterruptTask task = new InterruptTask(deadline - System.currentTimeMillis()); //獲取不到服務(wù)的情況下反復(fù)獲取 while(!Thread.interrupted()) { answer = this.subRule.choose(key); if (answer != null && answer.isAlive() || System.currentTimeMillis() >= deadline) { break; } Thread.yield(); } task.cancel(); } return answer != null && answer.isAlive() ? answer : null; } public Server choose(Object key) { return this.choose(this.getLoadBalancer(), key); } public void initWithNiwsConfig(IClientConfig clientConfig) { } }
小結(jié):采用RoundRobinRule的選擇機(jī)制,進(jìn)行反復(fù)嘗試,當(dāng)花費(fèi)時(shí)間超過(guò)設(shè)置的閾值maxRetryMills時(shí),就返回null
4.RoundRobinRule:輪詢策略,它會(huì)從服務(wù)清單中按照輪詢的方式依次選擇每個(gè)服務(wù)實(shí)例,它的工作原理是:直接獲取下一個(gè)可用實(shí)例,如果超過(guò)十次沒有獲取到可用的服務(wù)實(shí)例,則返回空且報(bào)出異常信息;
public class RoundRobinRule extends AbstractLoadBalancerRule { private AtomicInteger nextServerCyclicCounter; private static final boolean AVAILABLE_ONLY_SERVERS = true; private static final boolean ALL_SERVERS = false; private static Logger log = LoggerFactory.getLogger(RoundRobinRule.class); public RoundRobinRule() { this.nextServerCyclicCounter = new AtomicInteger(0); } public RoundRobinRule(ILoadBalancer lb) { this(); this.setLoadBalancer(lb); } public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { log.warn("no load balancer"); return null; } else { Server server = null; int count = 0; while(true) { //選擇十次,十次都沒選到可用服務(wù)就返回空 if (server == null && count++ < 10) { List<Server> reachableServers = lb.getReachableServers(); List<Server> allServers = lb.getAllServers(); int upCount = reachableServers.size(); int serverCount = allServers.size(); if (upCount != 0 && serverCount != 0) { int nextServerIndex = this.incrementAndGetModulo(serverCount); server = (Server)allServers.get(nextServerIndex); if (server == null) { Thread.yield(); } else { if (server.isAlive() && server.isReadyToServe()) { return server; } server = null; } continue; } log.warn("No up servers available from load balancer: " + lb); return null; } if (count >= 10) { log.warn("No available alive servers after 10 tries from load balancer: " + lb); } return server; } } } //遞增的形式實(shí)現(xiàn)輪詢 private int incrementAndGetModulo(int modulo) { int current; int next; do { current = this.nextServerCyclicCounter.get(); next = (current + 1) % modulo; } while(!this.nextServerCyclicCounter.compareAndSet(current, next)); return next; } public Server choose(Object key) { return this.choose(this.getLoadBalancer(), key); } public void initWithNiwsConfig(IClientConfig clientConfig) { } }
小結(jié):采用線性輪詢機(jī)制循環(huán)依次選擇每個(gè)服務(wù)實(shí)例,直到選擇到一個(gè)不為空的服務(wù)實(shí)例或循環(huán)次數(shù)達(dá)到10次
它有個(gè)子類WeightedResponseTimeRule,WeightedResponseTimeRule是對(duì)RoundRobinRule的優(yōu)化。WeightedResponseTimeRule在其父類的基礎(chǔ)上,增加了定時(shí)任務(wù)這個(gè)功能,通過(guò)啟動(dòng)一個(gè)定時(shí)任務(wù)來(lái)計(jì)算每個(gè)服務(wù)的權(quán)重,然后遍歷服務(wù)列表選擇服務(wù)實(shí)例,從而達(dá)到更加優(yōu)秀的分配效果。我們這里把這個(gè)類分為三部分:定時(shí)任務(wù),計(jì)算權(quán)值,選擇服務(wù)
1)定時(shí)任務(wù)
//定時(shí)任務(wù) void initialize(ILoadBalancer lb) { if (this.serverWeightTimer != null) { this.serverWeightTimer.cancel(); } this.serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-" + this.name, true); //開啟一個(gè)任務(wù),每30秒執(zhí)行一次 this.serverWeightTimer.schedule(new WeightedResponseTimeRule.DynamicServerWeightTask(), 0L, (long)this.serverWeightTaskTimerInterval); WeightedResponseTimeRule.ServerWeight sw = new WeightedResponseTimeRule.ServerWeight(); sw.maintainWeights(); Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() { public void run() { WeightedResponseTimeRule.logger.info("Stopping NFLoadBalancer-serverWeightTimer-" + WeightedResponseTimeRule.this.name); WeightedResponseTimeRule.this.serverWeightTimer.cancel(); } })); }
DynamicServerWeightTask()任務(wù)如下:
class DynamicServerWeightTask extends TimerTask { DynamicServerWeightTask() { } public void run() { WeightedResponseTimeRule.ServerWeight serverWeight = WeightedResponseTimeRule.this.new ServerWeight(); try { //計(jì)算權(quán)重 serverWeight.maintainWeights(); } catch (Exception var3) { WeightedResponseTimeRule.logger.error("Error running DynamicServerWeightTask for {}", WeightedResponseTimeRule.this.name, var3); } } }
小結(jié):調(diào)用initialize方法開啟定時(shí)任務(wù),再在任務(wù)里計(jì)算服務(wù)的權(quán)重
2)計(jì)算權(quán)重:第一步,先算出所有實(shí)例的響應(yīng)時(shí)間;第二步,再根據(jù)所有實(shí)例響應(yīng)時(shí)間,算出每個(gè)實(shí)例的權(quán)重
//用來(lái)存儲(chǔ)權(quán)重 private volatile List<Double> accumulatedWeights = new ArrayList(); //內(nèi)部類 class ServerWeight { ServerWeight() { } //該方法用于計(jì)算權(quán)重 public void maintainWeights() { //獲取負(fù)載均衡器 ILoadBalancer lb = WeightedResponseTimeRule.this.getLoadBalancer(); if (lb != null) { if (WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.compareAndSet(false, true)) { try { WeightedResponseTimeRule.logger.info("Weight adjusting job started"); AbstractLoadBalancer nlb = (AbstractLoadBalancer)lb; //獲得每個(gè)服務(wù)實(shí)例的信息 LoadBalancerStats stats = nlb.getLoadBalancerStats(); if (stats != null) { //實(shí)例的響應(yīng)時(shí)間 double totalResponseTime = 0.0D; ServerStats ss; //累加所有實(shí)例的響應(yīng)時(shí)間 for(Iterator var6 = nlb.getAllServers().iterator(); var6.hasNext(); totalResponseTime += ss.getResponseTimeAvg()) { Server server = (Server)var6.next(); ss = stats.getSingleServerStat(server); } Double weightSoFar = 0.0D; List<Double> finalWeights = new ArrayList(); Iterator var20 = nlb.getAllServers().iterator(); //計(jì)算負(fù)載均衡器所有服務(wù)的權(quán)重,公式是weightSoFar = weightSoFar + weight-實(shí)例平均響應(yīng)時(shí)間 while(var20.hasNext()) { Server serverx = (Server)var20.next(); ServerStats ssx = stats.getSingleServerStat(serverx); double weight = totalResponseTime - ssx.getResponseTimeAvg(); weightSoFar = weightSoFar + weight; finalWeights.add(weightSoFar); } WeightedResponseTimeRule.this.setWeights(finalWeights); return; } } catch (Exception var16) { WeightedResponseTimeRule.logger.error("Error calculating server weights", var16); return; } finally { WeightedResponseTimeRule.this.serverWeightAssignmentInProgress.set(false); } } } } }
3)選擇服務(wù)
@SuppressWarnings({"RCN_REDUNDANT_NULLCHECK_OF_NULL_VALUE"}) public Server choose(ILoadBalancer lb, Object key) { if (lb == null) { return null; } else { Server server = null; while(server == null) { List<Double> currentWeights = this.accumulatedWeights; if (Thread.interrupted()) { return null; } List<Server> allList = lb.getAllServers(); int serverCount = allList.size(); if (serverCount == 0) { return null; } int serverIndex = 0; double maxTotalWeight = currentWeights.size() == 0 ? 0.0D : (Double)currentWeights.get(currentWeights.size() - 1); if (maxTotalWeight >= 0.001D && serverCount == currentWeights.size()) { //生產(chǎn)0到最大權(quán)重值的隨機(jī)數(shù) double randomWeight = this.random.nextDouble() * maxTotalWeight; int n = 0; //循環(huán)權(quán)重區(qū)間 for(Iterator var13 = currentWeights.iterator(); var13.hasNext(); ++n) { //獲取到循環(huán)的數(shù) Double d = (Double)var13.next(); //假如隨機(jī)數(shù)在這個(gè)區(qū)間內(nèi),就拿該索引d服務(wù)列表獲取對(duì)應(yīng)的實(shí)例 if (d >= randomWeight) { serverIndex = n; break; } } server = (Server)allList.get(serverIndex); } else { server = super.choose(this.getLoadBalancer(), key); if (server == null) { return server; } } if (server == null) { Thread.yield(); } else { if (server.isAlive()) { return server; } server = null; } } return server; } }
小結(jié):首先生成了一個(gè)[0,最大權(quán)重值) 區(qū)間內(nèi)的隨機(jī)數(shù),然后遍歷權(quán)重列表,假如當(dāng)前隨機(jī)數(shù)在這個(gè)區(qū)間內(nèi),就通過(guò)該下標(biāo)獲得對(duì)應(yīng)的服務(wù)。
以上就是詳解SpringCloud的負(fù)載均衡的詳細(xì)內(nèi)容,更多關(guān)于SpringCloud 負(fù)載均衡的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
JavaCV實(shí)現(xiàn)讀取視頻信息及自動(dòng)截取封面圖詳解
javacv可以幫助我們?cè)趈ava中很方便的使用OpenCV以及FFmpeg相關(guān)的功能接口。本文將利用Javacv實(shí)現(xiàn)在視頻網(wǎng)站中常見的讀取視頻信息和自動(dòng)獲取封面圖的功能,感興趣的可以了解一下2022-06-06Mybatis分頁(yè)插件PageHelper的配置和簡(jiǎn)單使用方法(推薦)
在使用Java Spring開發(fā)的時(shí)候,Mybatis算是對(duì)數(shù)據(jù)庫(kù)操作的利器了。這篇文章主要介紹了Mybatis分頁(yè)插件PageHelper的配置和使用方法,需要的朋友可以參考下2017-12-12dubbo新手學(xué)習(xí)之事件通知實(shí)踐教程
這篇文章主要給大家介紹了關(guān)于dubbo新手學(xué)習(xí)之事件通知實(shí)踐的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-09-09Java RandomAccessFile 指定位置實(shí)現(xiàn)文件讀取與寫入
這篇文章主要介紹了Java RandomAccessFile 指定位置實(shí)現(xiàn)文件讀取與寫入的相關(guān)資料,需要的朋友可以參考下2017-01-01SpringBoot與velocity的結(jié)合的示例代碼
本篇文章主要介紹了SpringBoot與velocity的結(jié)合的示例代碼,小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過(guò)來(lái)看看吧2018-03-03Java+Selenium調(diào)用JavaScript的方法詳解
這篇文章主要為大家講解了java在利用Selenium操作瀏覽器網(wǎng)站時(shí)候,有時(shí)會(huì)需要用的JavaScript的地方,代碼該如何實(shí)現(xiàn)呢?快跟隨小編一起學(xué)習(xí)一下吧2023-01-01SpringBoot?MP簡(jiǎn)單的分頁(yè)查詢測(cè)試實(shí)現(xiàn)步驟分解
好久沒水后端的東西了,最近在做vue項(xiàng)目寫前端的代碼,所以cloud也停進(jìn)度了,吃完飯突然記得我沒有在博客里寫分頁(yè)的東西,雖然項(xiàng)目中用到了,但是沒有拎出來(lái),這里就拎出來(lái)看看2023-04-04