Java多線程之ReentrantReadWriteLock源碼解析
一、介紹
1.1 ReentrantReadWriteLock
ReentrantReadWriteLock 是一個讀寫鎖,允許多個讀或者一個寫線程在執(zhí)行。
內部的 Sync 繼承自 AQS,這個 Sync 包含一個共享讀鎖 ReadLock 和一個獨占寫鎖 WriteLock。
該鎖可以設置公平和非公平,默認非公平。
一個持有寫鎖的線程可以獲取讀鎖。如果該線程先持有寫鎖,再持有讀鎖并釋放寫鎖,稱為鎖降級。
WriteLock支持Condition并且與ReentrantLock語義一致,而ReadLock則不能使用Condition,否則拋出UnsupportedOperationException異常。
public class ReentrantReadWriteLock implements ReadWriteLock { /** 讀鎖 */ private final ReentrantReadWriteLock.ReadLock readerLock; /** 寫鎖 */ private final ReentrantReadWriteLock.WriteLock writerLock; /** 持有的AQS子類對象 */ final Sync sync; abstract static class Sync extends AbstractQueuedSynchronizer {} static final class NonfairSync extends Sync {} static final class FairSync extends Sync {} public static class ReadLock implements Lock {} public static class WriteLock implements Lock {} //默認非公平 public ReentrantReadWriteLock() { this(false); } public ReentrantReadWriteLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); readerLock = new ReadLock(this); writerLock = new WriteLock(this); } public static class ReadLock implements Lock { private final Sync sync; protected ReadLock(ReentrantReadWriteLock lock) { sync = lock.sync; } } public static class WriteLock implements Lock { private final Sync sync; protected WriteLock(ReentrantReadWriteLock lock) { sync = lock.sync; } } }
1.2 state
Sync 繼承了 AQS,其中有一個 int 的成員變量 state,int 共32位,這里將其視為兩部分,高16位表示讀的數(shù)量,低16位表示寫的數(shù)量,這里的數(shù)量表示線程重入后的總數(shù)量。
abstract static class Sync extends AbstractQueuedSynchronizer { //繼承的一個int的成員變量,將其拆分為高16位和低16位 //private volatile int state; static final int SHARED_SHIFT = 16; //讀一次,鎖增加的值 static final int SHARED_UNIT = (1 << SHARED_SHIFT); static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; //讀的數(shù)量 static int sharedCount(int c) { return c >>> SHARED_SHIFT; } //寫的數(shù)量 static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } }
1.3 HoldCounter
讀鎖使用了一個 ThreadLocal<HoldCounter>
讓每個線程有一個線程私有的 HoldCounter
,HoldCounter
包含一個線程 id 以及讀重入的次數(shù)。
查找對應線程的HoldCounter
其實只用一個 ThreadLocalHoldCounter
也足夠了。這里為了加快查詢,用了兩個額外的緩存,即 cachedHoldCounter
、firstReader
和 firstReaderHoldCount
(后兩個組合起來相當于一個 HoldCounter
)。
在讀鎖的相關操作中,先檢查 firstReader
是否為當前線程,否則檢查 cachedHoldCounter
內部的線程是否為當前線程,如果失敗最后會通過 readHolds
來獲取當前線程的 HoldCounter
。
static final class HoldCounter { int count = 0; // 使用線程id,而不是線程的引用。這樣可以防止垃圾不被回收 final long tid = getThreadId(Thread.currentThread()); } static final class ThreadLocalHoldCounter extends ThreadLocal<HoldCounter> { public HoldCounter initialValue() { return new HoldCounter(); } } //使用的ThreadLocal private transient ThreadLocalHoldCounter readHolds; //一個緩存 private transient HoldCounter cachedHoldCounter; //組合起來相當于一個緩存 private transient Thread firstReader = null; private transient int firstReaderHoldCount;
二、讀鎖
2.1 讀鎖的獲取
下面講解 tryAcquireShared
和 tryReadLock
,tryReadLock
是一種直接搶占的非公平獲取,和 tryAcquireShared
中的非公平獲取有所不同。
2.1.1 tryAcquireShared
根據注釋
1.檢查是否存在其他線程持有的寫鎖,是的話失敗,返回 -1;
2.判斷在當前公平狀態(tài)下能否讀,以及是否超過讀的最大數(shù)量,滿足條件則嘗試 CAS 修改狀態(tài),讓 state 加一個單位的讀 SHARED_UNIT;修改成功后會根據三種情況,即首次讀、firstReader 是當前線程,以及其他情況分別進行處理,成功,返回1;
3.前面未返回結果,會執(zhí)行 fullTryAcquireShared
。
可以將該方法視為 fullTryAcquireShared
的一次快速嘗試,如果嘗試失敗,會在 fullTryAcquireShared
的自旋中一直執(zhí)行,直到返回成功或者失敗。
//ReadLock public void lock() { sync.acquireShared(1); } //AQS public final void acquireShared(int arg) { if (tryAcquireShared(arg) < 0) doAcquireShared(arg); } //Sync protected final int tryAcquireShared(int unused) { /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */ Thread current = Thread.currentThread(); int c = getState(); // 如果寫的數(shù)量不是0,且寫線程不是當前線程,失敗 if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; // 獲取讀的個數(shù) int r = sharedCount(c); // 如果當前線程想要讀,沒有被堵塞 // 當前讀的數(shù)量未超過最大允許的讀的個數(shù) // CAS執(zhí)行成功 if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { // 第一次讀,修改firstReader和firstReaderHoldCount if (r == 0) { firstReader = current; firstReaderHoldCount = 1; // 如果當前線程正好是firstReader } else if (firstReader == current) { firstReaderHoldCount++; // 其他情況,經過一系列處理后,使得rh為當前線程的HoldCounter // 對rh的記數(shù)加一 } else { HoldCounter rh = cachedHoldCounter; // 如果cached為null或者不是當前線程 if (rh == null || rh.tid != getThreadId(current)) // 從readHolds中get,并修改cached cachedHoldCounter = rh = readHolds.get(); // 如果cached不是null,但記數(shù)為null // 這種情況表示當前線程的HoldCounter已經被刪除,即為null, // 但cached仍然保留著null之前的那個HoldCounter, // 為了方便,直接將cached設置給ThreadLocal即可 else if (rh.count == 0) readHolds.set(rh); //執(zhí)行到這里,rh表示當前線程的HoldCounter,記數(shù)加1 rh.count++; } return 1; } // 前面未返回結果,執(zhí)行第三步 return fullTryAcquireShared(current); }
2.1.2 fullTryAcquireShared
在上述的簡單嘗試 tryAcquireShared
未能確定結果后,執(zhí)行第三步 fullTryAcquireShared
自旋來不斷嘗試獲取讀鎖,直到成功獲取鎖返回1,或者滿足相應條件認定失敗返回-1。
1.其他線程持有寫鎖,失敗
2.當前線程讀的嘗試滿足堵塞條件表示當前線程排在其他線程后面,且當前線程沒有持有鎖即非重入的情況,失敗
3.其他情況則不斷自旋CAS,達到最大讀的數(shù)量會拋出異常,其他情況在成功后返回1。
final int fullTryAcquireShared(Thread current) { /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */ HoldCounter rh = null; for (;;) { int c = getState(); if (exclusiveCount(c) != 0) { // 存在其他線程持有寫鎖,返回-1 if (getExclusiveOwnerThread() != current) return -1; // else we hold the exclusive lock; blocking here // would cause deadlock. //沒有寫鎖,且該線程排在其他線程后面,應該被堵塞 //如果已經持有讀鎖,此次獲取是重入,可以執(zhí)行else if 之后的操作; //否則,會被堵塞,返回-1。 } else if (readerShouldBlock()) { // Make sure we're not acquiring read lock reentrantly //檢查firstReader if (firstReader == current) { // assert firstReaderHoldCount > 0; } else { if (rh == null) { rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) { //執(zhí)行到下一步rh是cached或者readHolds.get(),檢查rh rh = readHolds.get(); //在get時,如果不存在,會產生一個新的HoldCounter //記數(shù)為0表示不是重入鎖,會刪除讓其重新為null if (rh.count == 0) readHolds.remove(); } } //返回失敗 if (rh.count == 0) return -1; } } //達到最大值,不允許繼續(xù)增加 if (sharedCount(c) == MAX_COUNT) throw new Error("Maximum lock count exceeded"); //和2.1.1中相似 if (compareAndSetState(c, c + SHARED_UNIT)) { if (sharedCount(c) == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { if (rh == null) rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; cachedHoldCounter = rh; // cache for release } return 1; } } }
2.1.3 readerShouldBlock
該方法返回當前線程請求獲得讀鎖是否應該被堵塞,在公平鎖和非公平鎖中的實現(xiàn)不同
在公平鎖中,返回在排隊的隊列中當前線程之前是否存在其他線程,是的話返回 true,當前線程在隊列頭部或者隊列為空返回 false。
// FairSync final boolean readerShouldBlock() { return hasQueuedPredecessors(); } // AQS public final boolean hasQueuedPredecessors() { // The correctness of this depends on head being initialized // before tail and on head.next being accurate if the current // thread is first in queue. Node t = tail; // Read fields in reverse initialization order Node h = head; Node s; return h != t && ((s = h.next) == null || s.thread != Thread.currentThread()); }
在非公平鎖中,隊列中存在兩個節(jié)點,且第二個節(jié)點是獨占的寫節(jié)點,會返回 true,使得新來的讀線程堵塞。
這種方式只能在第二個節(jié)點是請求寫鎖的情況下返回 true,避免寫鎖的無限等待;如果寫鎖的請求節(jié)點在隊列的其他位置,返回 false,不影響新來的讀線程獲取讀鎖。
如果不按照這種方式處理,而按照隊列中的順序進行處理,則只要存在其他線程在讀,每次來一個新的線程請求讀鎖,總是成功,寫鎖會一直等待下去。
// NonfairSync final boolean readerShouldBlock() { /* As a heuristic to avoid indefinite writer starvation, * block if the thread that momentarily appears to be head * of queue, if one exists, is a waiting writer. This is * only a probabilistic effect since a new reader will not * block if there is a waiting writer behind other enabled * readers that have not yet drained from the queue. */ return apparentlyFirstQueuedIsExclusive(); } // AQS final boolean apparentlyFirstQueuedIsExclusive() { Node h, s; return (h = head) != null && (s = h.next) != null && !s.isShared() && s.thread != null; }
2.1.4 tryReadLock
和 fullTryAcquireShared
有相似之處,該方法總是直接去搶占鎖,直到其他線程獲取寫鎖返回失敗,或者當前當前線程獲取讀鎖返回成功。
//ReadLock public boolean tryLock() { return sync.tryReadLock(); } //Sync final boolean tryReadLock() { Thread current = Thread.currentThread(); for (;;) { int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return false; int r = sharedCount(c); if (r == MAX_COUNT) throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return true; } } }
2.2 讀鎖的釋放
tryReleaseShared
在 if/else 中實現(xiàn)了通過 first/cached/readHolds 獲取相應的 HoldCounter,并修改其中的記數(shù),記數(shù)為0則刪除;在 for 中,不斷自旋實現(xiàn) CAS 修改狀態(tài) c,如果修改后的狀態(tài)為0,表示讀寫鎖全部釋放,返回 true,否則是 false。
// ReadLockpublic void unlock() { sync.releaseShared(1);}// AQSpublic final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false;}// Syncprotected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); // 先檢查 firstReader是否是當前線程 if (firstReader == current) { // assert firstReaderHoldCount > 0; if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; //否則,處理 cached/readHolds中的HoldCounter } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } //自旋修改 state for (;;) { int c = getState(); int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. //只有讀寫鎖均釋放干凈,才返回true return nextc == 0; }}
三、寫鎖
3.1 寫鎖的獲取
下面講解 tryAcquire
和 tryWriteLock
,tryWriteLock
是一種非公平的獲取。
3.1.1 tryAcquire
根據注釋,tryAcquire 分為三步
1.如果讀記數(shù)非0,或者寫記數(shù)非0且寫線程不是當前線程,失敗
2.寫鎖的獲取應該被堵塞或者CAS失敗,失敗
3.其他情況,寫重入和新來的寫線程,均成功
//WriteLockpublic void lock() { sync.acquire(1);}//AQSpublic final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt();}//Syncprotected final boolean tryAcquire(int acquires) { /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. */ Thread current = Thread.currentThread(); int c = getState(); int w = exclusiveCount(c); //c分為兩部分,寫和讀 if (c != 0) { // (Note: if c != 0 and w == 0 then shared count != 0) // c非0,w是0,則讀記數(shù)非0 || 獨占的寫線程不是當前線程 // 返回 false if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w + exclusiveCount(acquires) > MAX_COUNT) throw new Error("Maximum lock count exceeded"); // Reentrant acquire // 重入的情況 setState(c + acquires); return true; } // 寫應該被堵塞或者CAS失敗,返回false if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; // 非重入,在CAS成功后,設定獨占寫線程為當前線程,返回true setExclusiveOwnerThread(current); return true;}
3.1.2 writerShouldBlock
在公平鎖中,檢查隊列前面是否有其他線程在排隊,在非公平鎖中,總是返回false,即總是不堵塞。
//FairSyncfinal boolean writerShouldBlock() { return hasQueuedPredecessors();}//NonfairSyncfinal boolean writerShouldBlock() { return false; // writers can always barge}
3.1.3 tryWriteLock
和 tryAcquire
在非公平鎖的寫法基本一樣。
final boolean tryWriteLock() { Thread current = Thread.currentThread(); int c = getState(); if (c != 0) { int w = exclusiveCount(c); if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w == MAX_COUNT) throw new Error("Maximum lock count exceeded"); } if (!compareAndSetState(c, c + 1)) return false; setExclusiveOwnerThread(current); return true;}
3.2 寫鎖的釋放
在 tryRelease
中,修改相應的狀態(tài),如果修改后寫鎖記數(shù)為0,則返回 true。
//WriteLockpublic void unlock() { sync.release(1);}//AQSpublic final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false;}//Syncprotected final boolean tryRelease(int releases) { // 首先檢查當前線程是否持有寫鎖 if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int nextc = getState() - releases; // 根據修改后的寫記數(shù)來確定free boolean free = exclusiveCount(nextc) == 0; // 此時,寫鎖完全釋放,設定寫獨占線程為null if (free) setExclusiveOwnerThread(null); setState(nextc); // 返回 free return free;}
四、鎖降級
如果一個線程已經持有寫鎖,再去獲取讀鎖并釋放寫鎖,這個過程稱為鎖降級。
持有寫鎖的時候去獲取讀鎖,只有該持有寫鎖的線程能夠成功獲取讀鎖,然后再釋放寫鎖,保證此時當前線程是有讀鎖的;如果有寫鎖,先釋放寫鎖,再獲取讀鎖,可能暫時不能獲取讀鎖,會在隊列中排隊等待。
到此這篇關于Java基礎之ReentrantReadWriteLock源碼解析的文章就介紹到這了,更多相關Java ReentrantReadWriteLock源碼解析內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
- java并發(fā)編程StampedLock高性能讀寫鎖詳解
- java并發(fā)編程中ReentrantLock可重入讀寫鎖
- Java并發(fā)之搞懂讀寫鎖
- Java并發(fā)編程之ReadWriteLock讀寫鎖的操作方法
- Java并發(fā)編程之重入鎖與讀寫鎖
- Java并發(fā)編程之顯示鎖ReentrantLock和ReadWriteLock讀寫鎖
- Java多線程 ReentrantReadWriteLock原理及實例詳解
- 一文了解Java讀寫鎖ReentrantReadWriteLock的使用
- 詳解Java?ReentrantReadWriteLock讀寫鎖的原理與實現(xiàn)
- Java并發(fā)讀寫鎖ReentrantReadWriteLock 使用場景
相關文章
Java使用OpenOffice將office文件轉換為PDF的示例方法
OpenOffice是一個開源的辦公套件,它包含了文檔處理、電子表格、演示文稿以及繪圖等多種功能,類似于Microsoft Office,本文將給大家介紹Java使用OpenOffice將office文件轉換為PDF的示例方法,需要的朋友可以參考下2024-09-09Java實戰(zhàn)之實現(xiàn)物流配送系統(tǒng)示例詳解
這篇文章主要介紹了一個java實戰(zhàn)項目:通過java、SSM、JSP、mysql和redis實現(xiàn)一個物流配送系統(tǒng)。文中的示例代碼非常詳細,需要的朋友可以參考一下2021-12-12Java并發(fā)Map面試線程安全數(shù)據結構全面分析
本文將探討如何在Java中有效地應對這些挑戰(zhàn),介紹一種強大的工具并發(fā)Map,它能夠幫助您管理多線程環(huán)境下的共享數(shù)據,確保數(shù)據的一致性和高性能,深入了解Java中的并發(fā)Map實現(xiàn),包括ConcurrentHashMap和ConcurrentSkipListMap,及相關知識點2023-09-09Kotlin中l(wèi)et、run、with、apply及also的用法和差別
作用域函數(shù)是Kotlin比較重要的一個特性,分為5種let、run、with、apply及also,這五個函數(shù)的工作方式非常相似,但是我們需要了解這5種函數(shù)的差異,以便在不同的場景更好的利用它,這篇文章主要介紹了Kotlin中l(wèi)et、run、with、apply及also的差別,需要的朋友可以參考下2023-11-11