欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

JDK源碼之Vector與HashSet解析

 更新時(shí)間:2021年06月15日 16:55:59   作者:興趣使然的草帽路飛  
HashSet、HashMap、ArrayList、LinkedList、Vector這幾個(gè)在Java編程中經(jīng)常用到,他們之間有很多聯(lián)系,有很多相通的地方,我們這次先了解一下Vector與HashSet

Vector簡介

ArrayList 和 Vector 其實(shí)大同小異,基本結(jié)構(gòu)都差不多,但是一些細(xì)節(jié)上有區(qū)別:比如線程安全與否,擴(kuò)容的大小等,Vector的線程安全通過在方法上直接加synchronized實(shí)現(xiàn)。擴(kuò)容默認(rèn)擴(kuò)大為原來的2倍。

繼承體系

在這里插入圖片描述

從圖中我們可以看出:Vector繼承了AbstractList,實(shí)現(xiàn)了List,RandomAccess,Cloneable,Serializable接口,因此Vector支持快速隨機(jī)訪問,可以被克隆,支持序列化。

Vector的成員變量(屬性)

// Object類型的數(shù)組
// 注意:訪問修飾符有所不同,Vector用protected修飾,而ArrayList用private修飾。
// JavaSe中:private變量只能被當(dāng)前類的方法訪問,而protected可以被同一包中的所有類和其他包的子類訪問
protected Object[] elementData;
// 動(dòng)態(tài)數(shù)組的實(shí)際有效大小,即數(shù)組中存儲的元素個(gè)數(shù)
protected int elementCount;
// 動(dòng)態(tài)數(shù)組的增長系數(shù):若開始事先沒有指定,則默認(rèn)是增加一倍的大小
protected int capacityIncrement;
// 序列版本號
private static final long serialVersionUID = -2767605614048989439L;

Vector的構(gòu)造函數(shù)

Vector的構(gòu)造函數(shù)有四個(gè)

// 默認(rèn)空參構(gòu)造函數(shù)
public Vector() {
    // 調(diào)用指定初始容量的構(gòu)造函數(shù),初始容量為10
    this(10);
}
// 可以指定初始容量的構(gòu)造函數(shù)
public Vector(int initialCapacity) {
    // 調(diào)用指定初始容量和增長系數(shù)的構(gòu)造函數(shù),增長系數(shù)設(shè)置為0
    this(initialCapacity, 0);
}
// 可以指定初始容量和增長系數(shù)的構(gòu)造函數(shù)
public Vector(int initialCapacity, int capacityIncrement) {
    super();
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal Capacity: "+
                                           initialCapacity);
    // 根據(jù)初始容量創(chuàng)建一個(gè)Object類型的數(shù)組
    this.elementData = new Object[initialCapacity];
    // 給增長系數(shù)賦值
    this.capacityIncrement = capacityIncrement;
}
// 參數(shù)為集合類型的構(gòu)造函數(shù)
public Vector(Collection<? extends E> c) {
    elementData = c.toArray();
    elementCount = elementData.length;
    // c.toArray might (incorrectly) not return Object[] (see 6260652)
    if (elementData.getClass() != Object[].class)
        // 將參數(shù)集合c 中的數(shù)據(jù)拷貝到elementData
        elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}

Vector成員方法

get方法

// 獲得指定下標(biāo)的元素?cái)?shù)據(jù)
public synchronized E get(int index) {
    if (index >= elementCount)
        throw new ArrayIndexOutOfBoundsException(index);
    return elementData(index);
}
@SuppressWarnings("unchecked")
E elementData(int index) {
    return (E) elementData[index];
}

set方法

// 修改指定下標(biāo)的元素?cái)?shù)據(jù)
public synchronized E set(int index, E element) {
    if (index >= elementCount)
        throw new ArrayIndexOutOfBoundsException(index);
    E oldValue = elementData(index);
    elementData[index] = element;
    return oldValue;
}

remove方法

// 刪除某個(gè)元素?cái)?shù)據(jù)
public boolean remove(Object o) {
    return removeElement(o);
}
// 
public synchronized boolean removeElement(Object obj) {
    modCount++;
    // 找到指定元素的下標(biāo)
    int i = indexOf(obj);
    if (i >= 0) {
        // 根據(jù)下標(biāo)刪除元素
        removeElementAt(i);
        return true;
    }
    return false;
}
// 根據(jù)下標(biāo)刪除元素
public synchronized void removeElementAt(int index) {
    modCount++;
    if (index >= elementCount) {
        throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                 elementCount);
    }
    else if (index < 0) {
        throw new ArrayIndexOutOfBoundsException(index);
    }
    // index之后的有效元素?cái)?shù)量
    int j = elementCount - index - 1;
    if (j > 0) {
        // 舊數(shù)組替換新數(shù)組
        System.arraycopy(elementData, index + 1, elementData, index, j);
    }
    // 有效元素?cái)?shù)量--
    elementCount--;
    elementData[elementCount] = null; /* to let gc do its work */
}

add方法

// 在數(shù)組末尾添加指定元素
public synchronized boolean add(E e) {
    modCount++;
    // 判斷是否需要擴(kuò)容
    ensureCapacityHelper(elementCount + 1);
    elementData[elementCount++] = e;
    return true;
}

其他方法

// 將數(shù)組Vector中的全部元素都拷貝到數(shù)組anArray中去,調(diào)用本地方法arraycopy
public synchronized void copyInto(Object[] anArray) {
    System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
public synchronized void trimToSize() {
    modCount++;
    int oldCapacity = elementData.length;
    if (elementCount < oldCapacity) {
        elementData = Arrays.copyOf(elementData, elementCount);
    }
}
// 設(shè)置Vector數(shù)組的大小
public synchronized void setSize(int newSize) {
    // 修改次數(shù)++
    modCount++;
    // 判斷設(shè)置的數(shù)組大小是否大于Vector中有存儲的效元素的個(gè)數(shù)
    // 若 newSize > Vector中有存儲的效元素的個(gè)數(shù),則調(diào)整Vector的大小
    if (newSize > elementCount) {
        // 調(diào)用判斷是否擴(kuò)容的方法,如果需要擴(kuò)容則該方法內(nèi)部調(diào)用擴(kuò)容方法grow()
        ensureCapacityHelper(newSize);
    } else {
        // 如果上述判斷不成立,則將newSize位置之后開始的元素都設(shè)置為null
        for (int i = newSize ; i < elementCount ; i++) {
            elementData[i] = null;
        }
    }
    // 更新有效元素個(gè)數(shù)
    elementCount = newSize;
}
// 獲取Vector的當(dāng)前容量
public synchronized int capacity() {
    return elementData.length;
}
// 獲取Vector里面的有效元素個(gè)數(shù)
public synchronized int size() {
    return elementCount;
}
// 判斷Vecotor中是否包含元素 o
public boolean contains(Object o) {
    return indexOf(o, 0) >= 0;
}
// 獲取Vector數(shù)組中第一次出現(xiàn)對象o的下標(biāo),如果不存在,那么返回-1
public int indexOf(Object o) {
    return indexOf(o, 0);
}
// 返回從index出開始第一次出現(xiàn)對象o的下標(biāo),如果不存在,那么返回-1
public synchronized int indexOf(Object o, int index) {
    if (o == null) {
        for (int i = index ; i < elementCount ; i++)
            if (elementData[i]==null)
                return i;
    } else {
        for (int i = index ; i < elementCount ; i++)
            if (o.equals(elementData[i]))
                return i;
    }
    return -1;
}
......

Vector的擴(kuò)容方法

// 確定數(shù)組當(dāng)前的容量大小
public synchronized void ensureCapacity(int minCapacity) {
    if (minCapacity > 0) {
        modCount++;
        ensureCapacityHelper(minCapacity);
    }
}
// 如果:當(dāng)前容量 > 當(dāng)前數(shù)組長度,就調(diào)用grow(minCapacity)方法進(jìn)行擴(kuò)容
// 由于該方法是在ensureCapacity()中被調(diào)用的,而ensureCapacity()方法中已經(jīng)加上了synchronized鎖,所以
// 該方法不需要再加鎖
private void ensureCapacityHelper(int minCapacity) {
    // overflow-conscious code
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);
}
// 最大上限的數(shù)組容量大小
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE 
// Vector集合中的核心擴(kuò)容方法
private void grow(int minCapacity) {
    // overflow-conscious code
    // 獲取舊數(shù)組的容量
    int oldCapacity = elementData.length;
    // 得到擴(kuò)容后(如果需要擴(kuò)容的話)的新數(shù)組容量
    int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                                      capacityIncrement : oldCapacity);
    // 如果新容量 < 數(shù)組實(shí)際所需容量,則令newCapacity = minCapacity
    if (newCapacity - minCapacity < 0)
         newCapacity = minCapacity;
    // 如果當(dāng)前所需容量 > MAX_ARRAY_SIZE,則新容量設(shè)為 Integer.MAX_VALUE,否則設(shè)為 MAX_ARRAY_SIZE
    if (newCapacity - MAX_ARRAY_SIZE > 0)
         newCapacity = hugeCapacity(minCapacity);
    elementData = Arrays.copyOf(elementData, newCapacity);
}
// 最大容量
private static int hugeCapacity(int minCapacity) {
    if (minCapacity < 0) // overflow
        throw new OutOfMemoryError();
    return (minCapacity > MAX_ARRAY_SIZE) ?
        Integer.MAX_VALUE :
        MAX_ARRAY_SIZE;
}

完整源碼

public class Vector<E>
    extends AbstractList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    protected Object[] elementData;
    protected int elementCount;
    protected int capacityIncrement;
    private static final long serialVersionUID = -2767605614048989439L;
    public Vector(int initialCapacity, int capacityIncrement) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
        this.capacityIncrement = capacityIncrement;
    }
    public Vector(int initialCapacity) {
        this(initialCapacity, 0);
    }
    public Vector() {
        this(10);
    }
    public Vector(Collection<? extends E> c) {
        elementData = c.toArray();
        elementCount = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
    }
    public synchronized void copyInto(Object[] anArray) {
        System.arraycopy(elementData, 0, anArray, 0, elementCount);
    }
    public synchronized void trimToSize() {
        modCount++;
        int oldCapacity = elementData.length;
        if (elementCount < oldCapacity) {
            elementData = Arrays.copyOf(elementData, elementCount);
        }
    }
    public synchronized void ensureCapacity(int minCapacity) {
        if (minCapacity > 0) {
            modCount++;
            ensureCapacityHelper(minCapacity);
        }
    }
    private void ensureCapacityHelper(int minCapacity) {
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                                         capacityIncrement : oldCapacity);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }
    public synchronized void setSize(int newSize) {
        modCount++;
        if (newSize > elementCount) {
            ensureCapacityHelper(newSize);
        } else {
            for (int i = newSize ; i < elementCount ; i++) {
                elementData[i] = null;
            }
        }
        elementCount = newSize;
    }
    public synchronized int capacity() {
        return elementData.length;
    }
    public synchronized int size() {
        return elementCount;
    }
    public synchronized boolean isEmpty() {
        return elementCount == 0;
    }
    public Enumeration<E> elements() {
        return new Enumeration<E>() {
            int count = 0;
            public boolean hasMoreElements() {
                return count < elementCount;
            }
            public E nextElement() {
                synchronized (Vector.this) {
                    if (count < elementCount) {
                        return elementData(count++);
                    }
                }
                throw new NoSuchElementException("Vector Enumeration");
            }
        };
    }
    public boolean contains(Object o) {
        return indexOf(o, 0) >= 0;
    }
    public int indexOf(Object o) {
        return indexOf(o, 0);
    }
    public synchronized int indexOf(Object o, int index) {
        if (o == null) {
            for (int i = index ; i < elementCount ; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index ; i < elementCount ; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    public synchronized int lastIndexOf(Object o) {
        return lastIndexOf(o, elementCount-1);
    }
    public synchronized int lastIndexOf(Object o, int index) {
        if (index >= elementCount)
            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
        if (o == null) {
            for (int i = index; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = index; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    public synchronized E elementAt(int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
        }
        return elementData(index);
    }
    public synchronized E firstElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(0);
    }
    public synchronized E lastElement() {
        if (elementCount == 0) {
            throw new NoSuchElementException();
        }
        return elementData(elementCount - 1);
    }
    public synchronized void setElementAt(E obj, int index) {
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        elementData[index] = obj;
    }
    public synchronized void removeElementAt(int index) {
        modCount++;
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        else if (index < 0) {
            throw new ArrayIndexOutOfBoundsException(index);
        }
        int j = elementCount - index - 1;
        if (j > 0) {
            System.arraycopy(elementData, index + 1, elementData, index, j);
        }
        elementCount--;
        elementData[elementCount] = null; /* to let gc do its work */
    }
    public synchronized void insertElementAt(E obj, int index) {
        modCount++;
        if (index > elementCount) {
            throw new ArrayIndexOutOfBoundsException(index
                                                     + " > " + elementCount);
        }
        ensureCapacityHelper(elementCount + 1);
        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
        elementData[index] = obj;
        elementCount++;
    }
    public synchronized void addElement(E obj) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = obj;
    }
    public synchronized boolean removeElement(Object obj) {
        modCount++;
        int i = indexOf(obj);
        if (i >= 0) {
            removeElementAt(i);
            return true;
        }
        return false;
    }
    public synchronized void removeAllElements() {
        modCount++;
        // Let gc do its work
        for (int i = 0; i < elementCount; i++)
            elementData[i] = null;
        elementCount = 0;
    }
    public synchronized Object clone() {
        try {
            @SuppressWarnings("unchecked")
                Vector<E> v = (Vector<E>) super.clone();
            v.elementData = Arrays.copyOf(elementData, elementCount);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }
    public synchronized Object[] toArray() {
        return Arrays.copyOf(elementData, elementCount);
    }
    @SuppressWarnings("unchecked")
    public synchronized <T> T[] toArray(T[] a) {
        if (a.length < elementCount)
            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
        System.arraycopy(elementData, 0, a, 0, elementCount);
        if (a.length > elementCount)
            a[elementCount] = null;
        return a;
    }
    // Positional Access Operations
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }
    public synchronized E get(int index) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        return elementData(index);
    }
    public synchronized E set(int index, E element) {
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }
    public synchronized boolean add(E e) {
        modCount++;
        ensureCapacityHelper(elementCount + 1);
        elementData[elementCount++] = e;
        return true;
    }
    public boolean remove(Object o) {
        return removeElement(o);
    }
    public void add(int index, E element) {
        insertElementAt(element, index);
    }
    public synchronized E remove(int index) {
        modCount++;
        if (index >= elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        E oldValue = elementData(index);
        int numMoved = elementCount - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--elementCount] = null; // Let gc do its work
        return oldValue;
    }
    public void clear() {
        removeAllElements();
    }
    // Bulk Operations
    public synchronized boolean containsAll(Collection<?> c) {
        return super.containsAll(c);
    }
    public synchronized boolean addAll(Collection<? extends E> c) {
        modCount++;
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);
        System.arraycopy(a, 0, elementData, elementCount, numNew);
        elementCount += numNew;
        return numNew != 0;
    }
    public synchronized boolean removeAll(Collection<?> c) {
        return super.removeAll(c);
    }
    public synchronized boolean retainAll(Collection<?> c) {
        return super.retainAll(c);
    }
    public synchronized boolean addAll(int index, Collection<? extends E> c) {
        modCount++;
        if (index < 0 || index > elementCount)
            throw new ArrayIndexOutOfBoundsException(index);
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityHelper(elementCount + numNew);
        int numMoved = elementCount - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);
        System.arraycopy(a, 0, elementData, index, numNew);
        elementCount += numNew;
        return numNew != 0;
    }
    public synchronized boolean equals(Object o) {
        return super.equals(o);
    }
    public synchronized int hashCode() {
        return super.hashCode();
    }
    public synchronized String toString() {
        return super.toString();
    }
    public synchronized List<E> subList(int fromIndex, int toIndex) {
        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
                                            this);
    }
    protected synchronized void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = elementCount - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);
        // Let gc do its work
        int newElementCount = elementCount - (toIndex-fromIndex);
        while (elementCount != newElementCount)
            elementData[--elementCount] = null;
    }
    private void readObject(ObjectInputStream in)
            throws IOException, ClassNotFoundException {
        ObjectInputStream.GetField gfields = in.readFields();
        int count = gfields.get("elementCount", 0);
        Object[] data = (Object[])gfields.get("elementData", null);
        if (count < 0 || data == null || count > data.length) {
            throw new StreamCorruptedException("Inconsistent vector internals");
        }
        elementCount = count;
        elementData = data.clone();
    }
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        final java.io.ObjectOutputStream.PutField fields = s.putFields();
        final Object[] data;
        synchronized (this) {
            fields.put("capacityIncrement", capacityIncrement);
            fields.put("elementCount", elementCount);
            data = elementData.clone();
        }
        fields.put("elementData", data);
        s.writeFields();
    }
    public synchronized ListIterator<E> listIterator(int index) {
        if (index < 0 || index > elementCount)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }
    public synchronized ListIterator<E> listIterator() {
        return new ListItr(0);
    }
    public synchronized Iterator<E> iterator() {
        return new Itr();
    }
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;
        public boolean hasNext() {
            // Racy but within spec, since modifications are checked
            // within or after synchronization in next/previous
            return cursor != elementCount;
        }
        public E next() {
            synchronized (Vector.this) {
                checkForComodification();
                int i = cursor;
                if (i >= elementCount)
                    throw new NoSuchElementException();
                cursor = i + 1;
                return elementData(lastRet = i);
            }
        }
        public void remove() {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.remove(lastRet);
                expectedModCount = modCount;
            }
            cursor = lastRet;
            lastRet = -1;
        }
        @Override
        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            synchronized (Vector.this) {
                final int size = elementCount;
                int i = cursor;
                if (i >= size) {
                    return;
                }
        @SuppressWarnings("unchecked")
                final E[] elementData = (E[]) Vector.this.elementData;
                if (i >= elementData.length) {
                    throw new ConcurrentModificationException();
                }
                while (i != size && modCount == expectedModCount) {
                    action.accept(elementData[i++]);
                }
                // update once at end of iteration to reduce heap write traffic
                cursor = i;
                lastRet = i - 1;
                checkForComodification();
            }
        }
        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }
    /**
     * An optimized version of AbstractList.ListItr
     */
    final class ListItr extends Itr implements ListIterator<E> {
        ListItr(int index) {
            super();
            cursor = index;
        }
        public boolean hasPrevious() {
            return cursor != 0;
        }
        public int nextIndex() {
            return cursor;
        }
        public int previousIndex() {
            return cursor - 1;
        }
        public E previous() {
            synchronized (Vector.this) {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                cursor = i;
                return elementData(lastRet = i);
            }
        }
        public void set(E e) {
            if (lastRet == -1)
                throw new IllegalStateException();
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.set(lastRet, e);
            }
        }
        public void add(E e) {
            int i = cursor;
            synchronized (Vector.this) {
                checkForComodification();
                Vector.this.add(i, e);
                expectedModCount = modCount;
            }
            cursor = i + 1;
            lastRet = -1;
        }
    }
    @Override
    public synchronized void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int elementCount = this.elementCount;
        for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }
    @Override
    @SuppressWarnings("unchecked")
    public synchronized boolean removeIf(Predicate<? super E> filter) {
        Objects.requireNonNull(filter);
        // figure out which elements are to be removed
        // any exception thrown from the filter predicate at this stage
        // will leave the collection unmodified
        int removeCount = 0;
        final int size = elementCount;
        final BitSet removeSet = new BitSet(size);
        final int expectedModCount = modCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            @SuppressWarnings("unchecked")
            final E element = (E) elementData[i];
            if (filter.test(element)) {
                removeSet.set(i);
                removeCount++;
            }
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        // shift surviving elements left over the spaces left by removed elements
        final boolean anyToRemove = removeCount > 0;
        if (anyToRemove) {
            final int newSize = size - removeCount;
            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                i = removeSet.nextClearBit(i);
                elementData[j] = elementData[i];
            }
            for (int k=newSize; k < size; k++) {
                elementData[k] = null;  // Let gc do its work
            }
            elementCount = newSize;
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }
        return anyToRemove;
    }
    @Override
    @SuppressWarnings("unchecked")
    public synchronized void replaceAll(UnaryOperator<E> operator) {
        Objects.requireNonNull(operator);
        final int expectedModCount = modCount;
        final int size = elementCount;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            elementData[i] = operator.apply((E) elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
    @SuppressWarnings("unchecked")
    @Override
    public synchronized void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, elementCount, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
    @Override
    public Spliterator<E> spliterator() {
        return new VectorSpliterator<>(this, null, 0, -1, 0);
    }
    /** Similar to ArrayList Spliterator */
    static final class VectorSpliterator<E> implements Spliterator<E> {
        private final Vector<E> list;
        private Object[] array;
        private int index; // current index, modified on advance/split
        private int fence; // -1 until used; then one past last index
        private int expectedModCount; // initialized when fence set
        /** Create new spliterator covering the given  range */
        VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,
                          int expectedModCount) {
            this.list = list;
            this.array = array;
            this.index = origin;
            this.fence = fence;
            this.expectedModCount = expectedModCount;
        }
        private int getFence() { // initialize on first use
            int hi;
            if ((hi = fence) < 0) {
                synchronized(list) {
                    array = list.elementData;
                    expectedModCount = list.modCount;
                    hi = fence = list.elementCount;
                }
            }
            return hi;
        }
        public Spliterator<E> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid) ? null :
                new VectorSpliterator<E>(list, array, lo, index = mid,
                                         expectedModCount);
        }
        @SuppressWarnings("unchecked")
        public boolean tryAdvance(Consumer<? super E> action) {
            int i;
            if (action == null)
                throw new NullPointerException();
            if (getFence() > (i = index)) {
                index = i + 1;
                action.accept((E)array[i]);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super E> action) {
            int i, hi; // hoist accesses and checks from loop
            Vector<E> lst; Object[] a;
            if (action == null)
                throw new NullPointerException();
            if ((lst = list) != null) {
                if ((hi = fence) < 0) {
                    synchronized(lst) {
                        expectedModCount = lst.modCount;
                        a = array = lst.elementData;
                        hi = fence = lst.elementCount;
                    }
                }
                else
                    a = array;
                if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
                    while (i < hi)
                        action.accept((E) a[i++]);
                    if (lst.modCount == expectedModCount)
                        return;
                }
            }
            throw new ConcurrentModificationException();
        }
        public long estimateSize() {
            return (long) (getFence() - index);
        }
        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }
}

HashSet簡介

HashSet的特點(diǎn)

  • 無序性(存儲元素?zé)o序)
  • 唯一性(允許使用null)
  • 本質(zhì)上,HashSet底層是通過HashMap來保證唯一性
  • HashSet沒有提供get()方法,同HashMap一樣,因?yàn)镾et內(nèi)部是無序的,所以只能通過迭代的方式獲得

HashSet的繼承體系

在這里插入圖片描述

HashSet源碼分析

1. 屬性(成員變量)

// HashSet內(nèi)部使用HashMap來存儲元素,因此本質(zhì)上是HashMap
private transient HashMap<E,Object> map;
// 虛擬對象,用來作為value放到map中(在HashSet底層的HashMap中,key為要存儲的元素,value統(tǒng)一為PRESENT)
private static final Object PRESENT = new Object();

2. 構(gòu)造方法

public HashSet() {
    map = new HashMap<>();
}
public HashSet(Collection<? extends E> c) {
    map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
    addAll(c);
}
public HashSet(int initialCapacity, float loadFactor) {
    map = new HashMap<>(initialCapacity, loadFactor);
}
public HashSet(int initialCapacity) {
    map = new HashMap<>(initialCapacity);
}
// 注意:這里未用public修飾,主要是給LinkedHashSet使用的
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
    map = new LinkedHashMap<>(initialCapacity, loadFactor);
}

構(gòu)造方法都是調(diào)用HashMap對應(yīng)的構(gòu)造方法。最后一個(gè)構(gòu)造方法有點(diǎn)特殊,它不是public的,意味著它只能被同一個(gè)包或者子類調(diào)用,這是LinkedHashSet專屬的方法。

3. 成員方法

3.1 添加元素add(E e)

// HashSet添加元素的時(shí)候,直接調(diào)用的是HashMap中的put()方法,
// 把元素本身作為key,把PRESENT作為value,也就是這個(gè)map中所有的value都是一樣的。
public boolean add(E e) {
    return map.put(e, PRESENT)==null;
}

3.2 刪除元素remove(Object o)

// HashSet刪除元素,直接調(diào)用HashMap的remove方法
public boolean remove(Object o) {
    // 注意:map的remove返回是刪除元素的value,而Set的remov返回的是boolean類型
    // 如果是null的話說明沒有該元素,如果不是null肯定等于PRESENT
    return map.remove(o)==PRESENT;
}

3.3 查找元素contains(Object o)

// Set中沒有g(shù)et()方法,不像List那樣可以按index獲取元素
public boolean contains(Object o) {
    return map.containsKey(o);
}

4. 完整代碼

HashSet是基于HashMap的,所以其源碼較少:

package java.util;
import java.io.InvalidObjectException;
import sun.misc.SharedSecrets;

public class HashSet<E>
    extends AbstractSet<E>
    implements Set<E>, Cloneable, java.io.Serializable
{
    static final long serialVersionUID = -5024744406713321676L;
    // 內(nèi)部元素存儲在HashMap中
    private transient HashMap<E,Object> map;
    // 虛擬元素,用來存到map元素的value中的,沒有實(shí)際意義
    private static final Object PRESENT = new Object();
    // 空構(gòu)造方法
    public HashSet() {
        map = new HashMap<>();
    }
    // 把另一個(gè)集合的元素全都添加到當(dāng)前Set中
    // 注意,這里初始化map的時(shí)候是計(jì)算了它的初始容量的
    public HashSet(Collection<? extends E> c) {
        map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
        addAll(c);
    }
    // 指定初始容量和裝載因子
    public HashSet(int initialCapacity, float loadFactor) {
        map = new HashMap<>(initialCapacity, loadFactor);
    }
    // 只指定初始容量
    public HashSet(int initialCapacity) {
        map = new HashMap<>(initialCapacity);
    }
    // LinkedHashSet專用的方法
    // dummy是沒有實(shí)際意義的, 只是為了跟上上面那個(gè)操持方法簽名不同而已
    HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }
    // 迭代器
    public Iterator<E> iterator() {
        return map.keySet().iterator();
    }
    // 元素個(gè)數(shù)
    public int size() {
        return map.size();
    }
    // 檢查是否為空
    public boolean isEmpty() {
        return map.isEmpty();
    }
    // 檢查是否包含某個(gè)元素
    public boolean contains(Object o) {
        return map.containsKey(o);
    }
    // 添加元素
    public boolean add(E e) {
        return map.put(e, PRESENT)==null;
    }
    // 刪除元素
    public boolean remove(Object o) {
        return map.remove(o)==PRESENT;
    }
    // 清空所有元素
    public void clear() {
        map.clear();
    }
    // 克隆方法
    @SuppressWarnings("unchecked")
    public Object clone() {
        try {
            HashSet<E> newSet = (HashSet<E>) super.clone();
            newSet.map = (HashMap<E, Object>) map.clone();
            return newSet;
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }
    // 序列化寫出方法
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // 寫出非static非transient屬性
        s.defaultWriteObject();
        // 寫出map的容量和裝載因子
        s.writeInt(map.capacity());
        s.writeFloat(map.loadFactor());
        // 寫出元素個(gè)數(shù)
        s.writeInt(map.size());
        // 遍歷寫出所有元素
        for (E e : map.keySet())
            s.writeObject(e);
    }
    // 序列化讀入方法
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // 讀入非static非transient屬性
        s.defaultReadObject();
        // 讀入容量, 并檢查不能小于0
        int capacity = s.readInt();
        if (capacity < 0) {
            throw new InvalidObjectException("Illegal capacity: " +
                                             capacity);
        }
        // 讀入裝載因子, 并檢查不能小于等于0或者是NaN(Not a Number)
        // java.lang.Float.NaN = 0.0f / 0.0f;
        float loadFactor = s.readFloat();
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
            throw new InvalidObjectException("Illegal load factor: " +
                                             loadFactor);
        }
        // 讀入元素個(gè)數(shù)并檢查不能小于0
        int size = s.readInt();
        if (size < 0) {
            throw new InvalidObjectException("Illegal size: " +
                                             size);
        }
        // 根據(jù)元素個(gè)數(shù)重新設(shè)置容量
        // 這是為了保證map有足夠的容量容納所有元素, 防止無意義的擴(kuò)容
        capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f),
                HashMap.MAXIMUM_CAPACITY);
        // 再次檢查某些東西, 不重要的代碼忽視掉
        SharedSecrets.getJavaOISAccess()
                     .checkArray(s, Map.Entry[].class, HashMap.tableSizeFor(capacity));
        // 創(chuàng)建map, 檢查是不是LinkedHashSet類型
        map = (((HashSet<?>)this) instanceof LinkedHashSet ?
               new LinkedHashMap<E,Object>(capacity, loadFactor) :
               new HashMap<E,Object>(capacity, loadFactor));
        // 讀入所有元素, 并放入map中
        for (int i=0; i<size; i++) {
            @SuppressWarnings("unchecked")
                E e = (E) s.readObject();
            map.put(e, PRESENT);
        }
    }
    // 可分割的迭代器, 主要用于多線程并行迭代處理時(shí)使用
    public Spliterator<E> spliterator() {
        return new HashMap.KeySpliterator<E,Object>(map, 0, -1, 0, 0);
    }
}

小結(jié)

  • HashSet內(nèi)部使用HashMap的key存儲元素,以此來保證元素不重復(fù);
  • HashSet是無序的,因?yàn)镠ashMap的key是無序的;
  • HashSet中允許有一個(gè)null元素,因?yàn)镠ashMap允許key為null;
  • HashSet是非線程安全的;HashSet是沒有g(shù)et()方法的;

擴(kuò)展:

當(dāng)向HashMap中存儲n個(gè)元素時(shí),它的初始化容量應(yīng)指定為:((n/0.75f) + 1),如果這個(gè)值小于16,就直接使用16為容量。初始化時(shí)指定容量是為了減少擴(kuò)容的次數(shù),提高效率。

LinkedHashSet分析

package java.util;
// LinkedHashSet繼承自HashSet
public class LinkedHashSet<E>
    extends HashSet<E>
    implements Set<E>, Cloneable, java.io.Serializable {
    private static final long serialVersionUID = -2851667679971038690L;
    // 傳入容量和裝載因子
    public LinkedHashSet(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor, true);
    }
    // 只傳入容量, 裝載因子默認(rèn)為0.75
    public LinkedHashSet(int initialCapacity) {
        super(initialCapacity, .75f, true);
    }
    // 使用默認(rèn)容量16, 默認(rèn)裝載因子0.75
    public LinkedHashSet() {
        super(16, .75f, true);
    }
    // 將集合c中的所有元素添加到LinkedHashSet中
    // 好奇怪, 這里計(jì)算容量的方式又變了
    // HashSet中使用的是Math.max((int) (c.size()/.75f) + 1, 16)
    // 這一點(diǎn)有點(diǎn)不得其解, 是作者偷懶?
    public LinkedHashSet(Collection<? extends E> c) {
        super(Math.max(2*c.size(), 11), .75f, true);
        addAll(c);
    }
    // 可分割的迭代器, 主要用于多線程并行迭代處理時(shí)使用
    @Override
    public Spliterator<E> spliterator() {
        return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED);
    }
}
  • LinkedHashSet繼承自HashSet,它的添加、刪除、查詢等方法都是直接用的HashSet的,唯一的不同就是它使用LinkedHashMap存儲元素。
  • LinkedHashSet是有序的,它是按照插入的順序排序的。
  • LinkedHashSet是不支持按訪問順序?qū)υ嘏判虻模荒馨床迦腠樞蚺判颉?/li>

因?yàn)?,LinkedHashSet所有的構(gòu)造方法都是調(diào)用HashSet的同一個(gè)構(gòu)造方法,如下:

	// HashSet的構(gòu)造方法
    HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }

通過調(diào)用LinkedHashMap的構(gòu)造方法初始化map,如下所示:

    public LinkedHashMap(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor);
        accessOrder = false;
    }

總結(jié)

這樣可以看到,這里把a(bǔ)ccessOrder寫死為false了,所以,LinkedHashSet是不支持按訪問順序?qū)υ嘏判虻?,只能按插入順序排序。還請大家多多關(guān)注腳本之家的其他文章!

相關(guān)文章

  • Struts2學(xué)習(xí)教程之自定義類型轉(zhuǎn)換器的方法

    Struts2學(xué)習(xí)教程之自定義類型轉(zhuǎn)換器的方法

    類型轉(zhuǎn)換器的作用是將請求中的字符串或字符串?dāng)?shù)組參數(shù)與action中的對象進(jìn)行相互轉(zhuǎn)換。下面這篇文章主要給大家介紹了關(guān)于Struts2學(xué)習(xí)教程之自定義類型轉(zhuǎn)換器的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2018-05-05
  • Java如何通過反射獲取對象的屬性和值

    Java如何通過反射獲取對象的屬性和值

    這篇文章主要介紹了Java如何通過反射獲取對象的屬性和值問題,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2024-02-02
  • SpringBoot 配置文件中配置的中文,程序讀取出來是亂碼的解決

    SpringBoot 配置文件中配置的中文,程序讀取出來是亂碼的解決

    這篇文章主要介紹了SpringBoot 配置文件中配置的中文,程序讀取出來是亂碼的解決,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2020-09-09
  • SpringBoot?mybatis-plus使用json字段實(shí)戰(zhàn)指南

    SpringBoot?mybatis-plus使用json字段實(shí)戰(zhàn)指南

    在現(xiàn)代應(yīng)用開發(fā)中經(jīng)常會使用JSON格式存儲和傳輸數(shù)據(jù),為了便捷地處理數(shù)據(jù)庫中的JSON字段,MyBatis-Plus提供了強(qiáng)大的JSON處理器,這篇文章主要給大家介紹了關(guān)于SpringBoot?mybatis-plus使用json字段的相關(guān)資料,需要的朋友可以參考下
    2024-01-01
  • mybatis返回類型map時(shí)如何將key大寫轉(zhuǎn)為小寫

    mybatis返回類型map時(shí)如何將key大寫轉(zhuǎn)為小寫

    這篇文章主要介紹了mybatis返回類型map時(shí)實(shí)現(xiàn)將key大寫轉(zhuǎn)為小寫操作,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2021-06-06
  • eclipse啟動(dòng)一個(gè)Springboot項(xiàng)目

    eclipse啟動(dòng)一個(gè)Springboot項(xiàng)目

    本文主要介紹了eclipse啟動(dòng)一個(gè)Springboot項(xiàng)目,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2022-08-08
  • SpringBoot項(xiàng)目中Controller接收兩個(gè)實(shí)體的實(shí)現(xiàn)方法

    SpringBoot項(xiàng)目中Controller接收兩個(gè)實(shí)體的實(shí)現(xiàn)方法

    本文主要介紹了SpringBoot項(xiàng)目中Controller接收兩個(gè)實(shí)體的實(shí)現(xiàn)方法,主要介紹了兩種方法,具有一定的參考價(jià)值,感興趣的可以了解一下
    2023-08-08
  • Java中equals()方法實(shí)例詳解

    Java中equals()方法實(shí)例詳解

    equals方法是java.lang.Object類的方法,下面這篇文章主要給大家介紹了關(guān)于Java中equals()方法的相關(guān)資料,文中通過實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2021-12-12
  • 使用JAVA+Maven+TestNG框架實(shí)現(xiàn)超詳細(xì)Appium測試安卓真機(jī)教程

    使用JAVA+Maven+TestNG框架實(shí)現(xiàn)超詳細(xì)Appium測試安卓真機(jī)教程

    這篇文章主要介紹了使用JAVA+Maven+TestNG框架實(shí)現(xiàn)超詳細(xì)Appium測試安卓真機(jī)教程,本文通過圖文并茂的形式給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2021-01-01
  • Java線程Dump分析工具jstack解析及使用場景

    Java線程Dump分析工具jstack解析及使用場景

    這篇文章主要介紹了Java線程Dump分析工具jstack解析及使用場景,具有一定借鑒價(jià)值,需要的朋友可以參考下
    2018-01-01

最新評論