OpenCV 圖像拼接和圖像融合的實(shí)現(xiàn)
圖像拼接在實(shí)際的應(yīng)用場景很廣,比如無人機(jī)航拍,遙感圖像等等,圖像拼接是進(jìn)一步做圖像理解基礎(chǔ)步驟,拼接效果的好壞直接影響接下來的工作,所以一個(gè)好的圖像拼接算法非常重要。
再舉一個(gè)身邊的例子吧,你用你的手機(jī)對某一場景拍照,但是你沒有辦法一次將所有你要拍的景物全部拍下來,所以你對該場景從左往右依次拍了好幾張圖,來把你要拍的所有景物記錄下來。那么我們能不能把這些圖像拼接成一個(gè)大圖呢?我們利用opencv就可以做到圖像拼接的效果!
比如我們有對這兩張圖進(jìn)行拼接。
從上面兩張圖可以看出,這兩張圖有比較多的重疊部分,這也是拼接的基本要求。
那么要實(shí)現(xiàn)圖像拼接需要那幾步呢?簡單來說有以下幾步:
- 對每幅圖進(jìn)行特征點(diǎn)提取
- 對對特征點(diǎn)進(jìn)行匹配
- 進(jìn)行圖像配準(zhǔn)
- 把圖像拷貝到另一幅圖像的特定位置
- 對重疊邊界進(jìn)行特殊處理
好吧,那就開始正式實(shí)現(xiàn)圖像配準(zhǔn)。
第一步就是特征點(diǎn)提取?,F(xiàn)在CV領(lǐng)域有很多特征點(diǎn)的定義,比如sift、surf、harris角點(diǎn)、ORB都是很有名的特征因子,都可以用來做圖像拼接的工作,他們各有優(yōu)勢。本文將使用ORB和SURF進(jìn)行圖像拼接,用其他方法進(jìn)行拼接也是類似的。
基于SURF的圖像拼接
用SIFT算法來實(shí)現(xiàn)圖像拼接是很常用的方法,但是因?yàn)镾IFT計(jì)算量很大,所以在速度要求很高的場合下不再適用。所以,它的改進(jìn)方法SURF因?yàn)樵谒俣确矫嬗辛嗣黠@的提高(速度是SIFT的3倍),所以在圖像拼接領(lǐng)域還是大有作為。雖說SURF精確度和穩(wěn)定性不及SIFT,但是其綜合能力還是優(yōu)越一些。下面將詳細(xì)介紹拼接的主要步驟。
1.特征點(diǎn)提取和匹配
特征點(diǎn)提取和匹配的方法我在上一篇文章《OpenCV特征檢測和特征匹配方法匯總》中做了詳細(xì)的介紹,在這里直接使用上文所總結(jié)的SURF特征提取和特征匹配的方法。
//提取特征點(diǎn) SurfFeatureDetector Detector(2000); vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2); //特征點(diǎn)描述,為下邊的特征點(diǎn)匹配做準(zhǔn)備 SurfDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2); FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints; vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train(); matcher.knnMatch(imageDesc2, matchePoints, 2); cout << "total match points: " << matchePoints.size() << endl; // Lowe's algorithm,獲取優(yōu)秀匹配點(diǎn) for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { GoodMatchePoints.push_back(matchePoints[i][0]); } } Mat first_match; drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); imshow("first_match ", first_match);
2.圖像配準(zhǔn)
這樣子我們就可以得到了兩幅待拼接圖的匹配點(diǎn)集,接下來我們進(jìn)行圖像的配準(zhǔn),即將兩張圖像轉(zhuǎn)換為同一坐標(biāo)下,這里我們需要使用findHomography函數(shù)來求得變換矩陣。但是需要注意的是,findHomography函數(shù)所要用到的點(diǎn)集是Point2f類型的,所有我們需要對我們剛得到的點(diǎn)集GoodMatchePoints再做一次處理,使其轉(zhuǎn)換為Point2f類型的點(diǎn)集。
vector<Point2f> imagePoints1, imagePoints2; for (int i = 0; i<GoodMatchePoints.size(); i++) { imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); }
這樣子,我們就可以拿著imagePoints1, imagePoints2去求變換矩陣了,并且實(shí)現(xiàn)圖像配準(zhǔn)。值得注意的是findHomography函數(shù)的參數(shù)中我們選澤了CV_RANSAC,這表明我們選擇RANSAC算法繼續(xù)篩選可靠地匹配點(diǎn),這使得匹配點(diǎn)解更為精確。
//獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個(gè)點(diǎn),效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 //圖像配準(zhǔn) Mat imageTransform1, imageTransform2; warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8)); imshow("直接經(jīng)過透視矩陣變換", imageTransform1); imwrite("trans1.jpg", imageTransform1);
3. 圖像拷貝
拷貝的思路很簡單,就是將左圖直接拷貝到配準(zhǔn)圖上就可以了。
//創(chuàng)建拼接后的圖,需提前計(jì)算圖的大小 int dst_width = imageTransform1.cols; //取最右點(diǎn)的長度為拼接圖的長度 int dst_height = image02.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); imshow("b_dst", dst);
4.圖像融合(去裂縫處理)
從上圖可以看出,兩圖的拼接并不自然,原因就在于拼接圖的交界處,兩圖因?yàn)楣庹丈珴傻脑蚴沟脙蓤D交界處的過渡很糟糕,所以需要特定的處理解決這種不自然。這里的處理思路是加權(quán)融合,在重疊部分由前一幅圖像慢慢過渡到第二幅圖像,即將圖像的重疊區(qū)域的像素值按一定的權(quán)值相加合成新的圖像。
//優(yōu)化兩圖的連接處,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) { int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區(qū)域的左邊界 double processWidth = img1.cols - start;//重疊區(qū)域的寬度 int rows = dst.rows; int cols = img1.cols; //注意,是列數(shù)*通道數(shù) double alpha = 1;//img1中像素的權(quán)重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //獲取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到圖像trans中無像素的黑點(diǎn),則完全拷貝img1中的數(shù)據(jù) if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的權(quán)重,與當(dāng)前處理點(diǎn)距重疊區(qū)域左邊界的距離成正比,實(shí)驗(yàn)證明,這種方法確實(shí)好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } } }
多嘗試幾張,驗(yàn)證拼接效果
測試一
測試二
測試三
最后給出完整的SURF算法實(shí)現(xiàn)的拼接代碼。
#include "highgui/highgui.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/legacy/legacy.hpp" #include <iostream> using namespace cv; using namespace std; void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst); typedef struct { Point2f left_top; Point2f left_bottom; Point2f right_top; Point2f right_bottom; }four_corners_t; four_corners_t corners; void CalcCorners(const Mat& H, const Mat& src) { double v2[] = { 0, 0, 1 };//左上角 double v1[3];//變換后的坐標(biāo)值 Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量 Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; //左上角(0,0,1) cout << "V2: " << V2 << endl; cout << "V1: " << V1 << endl; corners.left_top.x = v1[0] / v1[2]; corners.left_top.y = v1[1] / v1[2]; //左下角(0,src.rows,1) v2[0] = 0; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.left_bottom.x = v1[0] / v1[2]; corners.left_bottom.y = v1[1] / v1[2]; //右上角(src.cols,0,1) v2[0] = src.cols; v2[1] = 0; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_top.x = v1[0] / v1[2]; corners.right_top.y = v1[1] / v1[2]; //右下角(src.cols,src.rows,1) v2[0] = src.cols; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_bottom.x = v1[0] / v1[2]; corners.right_bottom.y = v1[1] / v1[2]; } int main(int argc, char *argv[]) { Mat image01 = imread("g5.jpg", 1); //右圖 Mat image02 = imread("g4.jpg", 1); //左圖 imshow("p2", image01); imshow("p1", image02); //灰度圖轉(zhuǎn)換 Mat image1, image2; cvtColor(image01, image1, CV_RGB2GRAY); cvtColor(image02, image2, CV_RGB2GRAY); //提取特征點(diǎn) SurfFeatureDetector Detector(2000); vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2); //特征點(diǎn)描述,為下邊的特征點(diǎn)匹配做準(zhǔn)備 SurfDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2); FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints; vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train(); matcher.knnMatch(imageDesc2, matchePoints, 2); cout << "total match points: " << matchePoints.size() << endl; // Lowe's algorithm,獲取優(yōu)秀匹配點(diǎn) for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { GoodMatchePoints.push_back(matchePoints[i][0]); } } Mat first_match; drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); imshow("first_match ", first_match); vector<Point2f> imagePoints1, imagePoints2; for (int i = 0; i<GoodMatchePoints.size(); i++) { imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); } //獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個(gè)點(diǎn),效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 //計(jì)算配準(zhǔn)圖的四個(gè)頂點(diǎn)坐標(biāo) CalcCorners(homo, image01); cout << "left_top:" << corners.left_top << endl; cout << "left_bottom:" << corners.left_bottom << endl; cout << "right_top:" << corners.right_top << endl; cout << "right_bottom:" << corners.right_bottom << endl; //圖像配準(zhǔn) Mat imageTransform1, imageTransform2; warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8)); imshow("直接經(jīng)過透視矩陣變換", imageTransform1); imwrite("trans1.jpg", imageTransform1); //創(chuàng)建拼接后的圖,需提前計(jì)算圖的大小 int dst_width = imageTransform1.cols; //取最右點(diǎn)的長度為拼接圖的長度 int dst_height = image02.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); imshow("b_dst", dst); OptimizeSeam(image02, imageTransform1, dst); imshow("dst", dst); imwrite("dst.jpg", dst); waitKey(); return 0; } //優(yōu)化兩圖的連接處,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) { int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區(qū)域的左邊界 double processWidth = img1.cols - start;//重疊區(qū)域的寬度 int rows = dst.rows; int cols = img1.cols; //注意,是列數(shù)*通道數(shù) double alpha = 1;//img1中像素的權(quán)重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //獲取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到圖像trans中無像素的黑點(diǎn),則完全拷貝img1中的數(shù)據(jù) if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的權(quán)重,與當(dāng)前處理點(diǎn)距重疊區(qū)域左邊界的距離成正比,實(shí)驗(yàn)證明,這種方法確實(shí)好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } } }
基于ORB的圖像拼接
利用ORB進(jìn)行圖像拼接的思路跟上面的思路基本一樣,只是特征提取和特征點(diǎn)匹配的方式略有差異罷了。這里就不再詳細(xì)介紹思路了,直接貼代碼看效果。
#include "highgui/highgui.hpp" #include "opencv2/nonfree/nonfree.hpp" #include "opencv2/legacy/legacy.hpp" #include <iostream> using namespace cv; using namespace std; void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst); typedef struct { Point2f left_top; Point2f left_bottom; Point2f right_top; Point2f right_bottom; }four_corners_t; four_corners_t corners; void CalcCorners(const Mat& H, const Mat& src) { double v2[] = { 0, 0, 1 };//左上角 double v1[3];//變換后的坐標(biāo)值 Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量 Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; //左上角(0,0,1) cout << "V2: " << V2 << endl; cout << "V1: " << V1 << endl; corners.left_top.x = v1[0] / v1[2]; corners.left_top.y = v1[1] / v1[2]; //左下角(0,src.rows,1) v2[0] = 0; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.left_bottom.x = v1[0] / v1[2]; corners.left_bottom.y = v1[1] / v1[2]; //右上角(src.cols,0,1) v2[0] = src.cols; v2[1] = 0; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_top.x = v1[0] / v1[2]; corners.right_top.y = v1[1] / v1[2]; //右下角(src.cols,src.rows,1) v2[0] = src.cols; v2[1] = src.rows; v2[2] = 1; V2 = Mat(3, 1, CV_64FC1, v2); //列向量 V1 = Mat(3, 1, CV_64FC1, v1); //列向量 V1 = H * V2; corners.right_bottom.x = v1[0] / v1[2]; corners.right_bottom.y = v1[1] / v1[2]; } int main(int argc, char *argv[]) { Mat image01 = imread("t1.jpg", 1); //右圖 Mat image02 = imread("t2.jpg", 1); //左圖 imshow("p2", image01); imshow("p1", image02); //灰度圖轉(zhuǎn)換 Mat image1, image2; cvtColor(image01, image1, CV_RGB2GRAY); cvtColor(image02, image2, CV_RGB2GRAY); //提取特征點(diǎn) OrbFeatureDetector surfDetector(3000); vector<KeyPoint> keyPoint1, keyPoint2; surfDetector.detect(image1, keyPoint1); surfDetector.detect(image2, keyPoint2); //特征點(diǎn)描述,為下邊的特征點(diǎn)匹配做準(zhǔn)備 OrbDescriptorExtractor SurfDescriptor; Mat imageDesc1, imageDesc2; SurfDescriptor.compute(image1, keyPoint1, imageDesc1); SurfDescriptor.compute(image2, keyPoint2, imageDesc2); flann::Index flannIndex(imageDesc1, flann::LshIndexParams(12, 20, 2), cvflann::FLANN_DIST_HAMMING); vector<DMatch> GoodMatchePoints; Mat macthIndex(imageDesc2.rows, 2, CV_32SC1), matchDistance(imageDesc2.rows, 2, CV_32FC1); flannIndex.knnSearch(imageDesc2, macthIndex, matchDistance, 2, flann::SearchParams()); // Lowe's algorithm,獲取優(yōu)秀匹配點(diǎn) for (int i = 0; i < matchDistance.rows; i++) { if (matchDistance.at<float>(i, 0) < 0.4 * matchDistance.at<float>(i, 1)) { DMatch dmatches(i, macthIndex.at<int>(i, 0), matchDistance.at<float>(i, 0)); GoodMatchePoints.push_back(dmatches); } } Mat first_match; drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match); imshow("first_match ", first_match); vector<Point2f> imagePoints1, imagePoints2; for (int i = 0; i<GoodMatchePoints.size(); i++) { imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt); imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt); } //獲取圖像1到圖像2的投影映射矩陣 尺寸為3*3 Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC); ////也可以使用getPerspectiveTransform方法獲得透視變換矩陣,不過要求只能有4個(gè)點(diǎn),效果稍差 //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2); cout << "變換矩陣為:\n" << homo << endl << endl; //輸出映射矩陣 //計(jì)算配準(zhǔn)圖的四個(gè)頂點(diǎn)坐標(biāo) CalcCorners(homo, image01); cout << "left_top:" << corners.left_top << endl; cout << "left_bottom:" << corners.left_bottom << endl; cout << "right_top:" << corners.right_top << endl; cout << "right_bottom:" << corners.right_bottom << endl; //圖像配準(zhǔn) Mat imageTransform1, imageTransform2; warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows)); //warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8)); imshow("直接經(jīng)過透視矩陣變換", imageTransform1); imwrite("trans1.jpg", imageTransform1); //創(chuàng)建拼接后的圖,需提前計(jì)算圖的大小 int dst_width = imageTransform1.cols; //取最右點(diǎn)的長度為拼接圖的長度 int dst_height = image02.rows; Mat dst(dst_height, dst_width, CV_8UC3); dst.setTo(0); imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows))); image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows))); imshow("b_dst", dst); OptimizeSeam(image02, imageTransform1, dst); imshow("dst", dst); imwrite("dst.jpg", dst); waitKey(); return 0; } //優(yōu)化兩圖的連接處,使得拼接自然 void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst) { int start = MIN(corners.left_top.x, corners.left_bottom.x);//開始位置,即重疊區(qū)域的左邊界 double processWidth = img1.cols - start;//重疊區(qū)域的寬度 int rows = dst.rows; int cols = img1.cols; //注意,是列數(shù)*通道數(shù) double alpha = 1;//img1中像素的權(quán)重 for (int i = 0; i < rows; i++) { uchar* p = img1.ptr<uchar>(i); //獲取第i行的首地址 uchar* t = trans.ptr<uchar>(i); uchar* d = dst.ptr<uchar>(i); for (int j = start; j < cols; j++) { //如果遇到圖像trans中無像素的黑點(diǎn),則完全拷貝img1中的數(shù)據(jù) if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0) { alpha = 1; } else { //img1中像素的權(quán)重,與當(dāng)前處理點(diǎn)距重疊區(qū)域左邊界的距離成正比,實(shí)驗(yàn)證明,這種方法確實(shí)好 alpha = (processWidth - (j - start)) / processWidth; } d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha); d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha); d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha); } } }
看一看拼接效果,我覺得還是不錯(cuò)的。
看一下這一組圖片,這組圖片產(chǎn)生了鬼影,為什么?因?yàn)閮煞鶊D中的人物走動(dòng)了啊!所以要做圖像拼接,盡量保證使用的是靜態(tài)圖片,不要加入一些動(dòng)態(tài)因素干擾拼接。
opencv自帶的拼接算法stitch
opencv其實(shí)自己就有實(shí)現(xiàn)圖像拼接的算法,當(dāng)然效果也是相當(dāng)好的,但是因?yàn)槠鋵?shí)現(xiàn)很復(fù)雜,而且代碼量很龐大,其實(shí)在一些小應(yīng)用下的拼接有點(diǎn)殺雞用牛刀的感覺。最近在閱讀sticth源碼時(shí),發(fā)現(xiàn)其中有幾個(gè)很有意思的地方。
1.opencv stitch選擇的特征檢測方式
一直很好奇opencv stitch算法到底選用了哪個(gè)算法作為其特征檢測方式,是ORB,SIFT還是SURF?讀源碼終于看到答案。
#ifdef HAVE_OPENCV_NONFREE stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder()); #else stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder()); #endif
在源碼createDefault函數(shù)中(默認(rèn)設(shè)置),第一選擇是SURF,第二選擇才是ORB(沒有NONFREE模塊才選),所以既然大牛們這么選擇,必然是經(jīng)過綜合考慮的,所以應(yīng)該SURF算法在圖像拼接有著更優(yōu)秀的效果。
2.opencv stitch獲取匹配點(diǎn)的方式
以下代碼是opencv stitch源碼中的特征點(diǎn)提取部分,作者使用了兩次特征點(diǎn)提取的思路:先對圖一進(jìn)行特征點(diǎn)提取和篩選匹配(1->2),再對圖二進(jìn)行特征點(diǎn)的提取和匹配(2->1),這跟我們平時(shí)的一次提取的思路不同,這種二次提取的思路可以保證更多的匹配點(diǎn)被選中,匹配點(diǎn)越多,findHomography求出的變換越準(zhǔn)確。這個(gè)思路值得借鑒。
matches_info.matches.clear(); Ptr<flann::IndexParams> indexParams = new flann::KDTreeIndexParams(); Ptr<flann::SearchParams> searchParams = new flann::SearchParams(); if (features2.descriptors.depth() == CV_8U) { indexParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); searchParams->setAlgorithm(cvflann::FLANN_INDEX_LSH); } FlannBasedMatcher matcher(indexParams, searchParams); vector< vector<DMatch> > pair_matches; MatchesSet matches; // Find 1->2 matches matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) { matches_info.matches.push_back(m0); matches.insert(make_pair(m0.queryIdx, m0.trainIdx)); } } LOG("\n1->2 matches: " << matches_info.matches.size() << endl); // Find 2->1 matches pair_matches.clear(); matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) if (matches.find(make_pair(m0.trainIdx, m0.queryIdx)) == matches.end()) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } LOG("1->2 & 2->1 matches: " << matches_info.matches.size() << endl);
這里我仿照opencv源碼二次提取特征點(diǎn)的思路對我原有拼接代碼進(jìn)行改寫,實(shí)驗(yàn)證明獲取的匹配點(diǎn)確實(shí)較一次提取要多。
//提取特征點(diǎn) SiftFeatureDetector Detector(1000); // 海塞矩陣閾值,在這里調(diào)整精度,值越大點(diǎn)越少,越精準(zhǔn) vector<KeyPoint> keyPoint1, keyPoint2; Detector.detect(image1, keyPoint1); Detector.detect(image2, keyPoint2); //特征點(diǎn)描述,為下邊的特征點(diǎn)匹配做準(zhǔn)備 SiftDescriptorExtractor Descriptor; Mat imageDesc1, imageDesc2; Descriptor.compute(image1, keyPoint1, imageDesc1); Descriptor.compute(image2, keyPoint2, imageDesc2); FlannBasedMatcher matcher; vector<vector<DMatch> > matchePoints; vector<DMatch> GoodMatchePoints; MatchesSet matches; vector<Mat> train_desc(1, imageDesc1); matcher.add(train_desc); matcher.train(); matcher.knnMatch(imageDesc2, matchePoints, 2); // Lowe's algorithm,獲取優(yōu)秀匹配點(diǎn) for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { GoodMatchePoints.push_back(matchePoints[i][0]); matches.insert(make_pair(matchePoints[i][0].queryIdx, matchePoints[i][0].trainIdx)); } } cout<<"\n1->2 matches: " << GoodMatchePoints.size() << endl; #if 1 FlannBasedMatcher matcher2; matchePoints.clear(); vector<Mat> train_desc2(1, imageDesc2); matcher2.add(train_desc2); matcher2.train(); matcher2.knnMatch(imageDesc1, matchePoints, 2); // Lowe's algorithm,獲取優(yōu)秀匹配點(diǎn) for (int i = 0; i < matchePoints.size(); i++) { if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance) { if (matches.find(make_pair(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx)) == matches.end()) { GoodMatchePoints.push_back(DMatch(matchePoints[i][0].trainIdx, matchePoints[i][0].queryIdx, matchePoints[i][0].distance)); } } } cout<<"1->2 & 2->1 matches: " << GoodMatchePoints.size() << endl; #endif
最后再看一下opencv stitch的拼接效果吧~速度雖然比較慢,但是效果還是很好的。
#include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/stitching/stitcher.hpp> using namespace std; using namespace cv; bool try_use_gpu = false; vector<Mat> imgs; string result_name = "dst1.jpg"; int main(int argc, char * argv[]) { Mat img1 = imread("34.jpg"); Mat img2 = imread("35.jpg"); imshow("p1", img1); imshow("p2", img2); if (img1.empty() || img2.empty()) { cout << "Can't read image" << endl; return -1; } imgs.push_back(img1); imgs.push_back(img2); Stitcher stitcher = Stitcher::createDefault(try_use_gpu); // 使用stitch函數(shù)進(jìn)行拼接 Mat pano; Stitcher::Status status = stitcher.stitch(imgs, pano); if (status != Stitcher::OK) { cout << "Can't stitch images, error code = " << int(status) << endl; return -1; } imwrite(result_name, pano); Mat pano2 = pano.clone(); // 顯示源圖像,和結(jié)果圖像 imshow("全景圖像", pano); if (waitKey() == 27) return 0; }
到此這篇關(guān)于OpenCV 圖像拼接和圖像融合的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)OpenCV 圖像拼接和圖像融合內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
基于C語言實(shí)現(xiàn)計(jì)算生辰八字五行的示例詳解
生辰八字,簡稱八字,是指一個(gè)人出生時(shí)的干支歷日期;年月日時(shí)共四柱干支,每柱兩字,合共八個(gè)字。這篇文章主要介紹了C語言實(shí)現(xiàn)計(jì)算生辰八字五行的示例代碼,需要的可以參考一下2023-03-03C++11 移動(dòng)構(gòu)造函數(shù)的使用
本文主要介紹了C++11 移動(dòng)構(gòu)造函數(shù)的使用,文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-01-01