CRITICAL_SECTION用法案例詳解
很多人對CRITICAL_SECTION的理解是錯誤的,認為CRITICAL_SECTION是鎖定了資源,其實,CRITICAL_SECTION是不能夠“鎖定”資源的,它能夠完成的功能,是同步不同線程的代碼段。簡單說,當一個線程執(zhí)行了EnterCritialSection之后,cs里面的信息便被修改,以指明哪一個線程占用了它。而此時,并沒有任何資源被“鎖定”。不管什么資源,其它線程都還是可以訪問的(當然,執(zhí)行的結果可能是錯誤的)。只不過,在這個線程尚未執(zhí)行LeaveCriticalSection之前,其它線程碰到EnterCritialSection語句的話,就會處于等待狀態(tài),相當于線程被掛起了。 這種情況下,就起到了保護共享資源的作用。
也正由于CRITICAL_SECTION是這樣發(fā)揮作用的,所以,必須把每一個線程中訪問共享資源的語句都放在EnterCritialSection和LeaveCriticalSection之間。這是初學者很容易忽略的地方。
當然,上面說的都是對于同一個CRITICAL_SECTION而言的。 如果用到兩個CRITICAL_SECTION,比如說:
第一個線程已經執(zhí)行了EnterCriticalSection(&cs)并且還沒有執(zhí)行LeaveCriticalSection(&cs),這時另一個線程想要執(zhí)行EnterCriticalSection(&cs2),這種情況是可以的(除非cs2已經被第三個線程搶先占用了)。這也就是多個CRITICAL_SECTION實現同步的思想。
比如說我們定義了一個共享資源dwTime[100],兩個線程ThreadFuncA和ThreadFuncB都對它進行讀寫操作。當我們想要保證 dwTime[100]的操作完整性,即不希望寫到一半的數據被另一個線程讀取,那么用CRITICAL_SECTION來進行線程同步如下:
第一個線程函數:
DWORD WINAPI ThreadFuncA(LPVOID lp) { EnterCriticalSection(&cs); ... // 操作dwTime ... LeaveCriticalSection(&cs); return 0; }
寫出這個函數之后,很多初學者都會錯誤地以為,此時cs對dwTime進行了鎖定操作,dwTime處于cs的保護之中。一個“自然而然”的想法就是——cs和dwTime一一對應上了。這么想,就大錯特錯了。dwTime并沒有和任何東西對應,它仍然是任何其它線程都可以訪問的。
如果你像如下的方式來寫第二個線程,那么就會有問題:
DWORD WINAPI ThreadFuncB(LPVOID lp) { ... // 操作dwTime ... return 0; }
當線程ThreadFuncA執(zhí)行了EnterCriticalSection(&cs),并開始操作dwTime[100]的時候,線程ThreadFuncB可能隨時醒過來,也開始操作dwTime[100],這樣,dwTime[100]中的數據就被破壞了。
為了讓 CRITICAL_SECTION發(fā)揮作用,我們必須在訪問dwTime的任何一個地方都加上 EnterCriticalSection(&cs)和LeaveCriticalSection(&cs)語句。所以,必須按照下面的方式來寫第二個線程函數:
DWORD WINAPI ThreadFuncB(LPVOID lp) { EnterCriticalSection(&cs); ... // 操作dwTime ... LeaveCriticalSection(&cs); return 0; }
這樣,當線程ThreadFuncB醒過來時,它遇到的第一個語句是EnterCriticalSection(&cs),這個語句將對cs變量進行訪問。如果這個時候第一個線程仍然在操作dwTime[100],cs變量中包含的值將告訴第二個線程,已有其它線程占用了cs。因此,第二個線程的 EnterCriticalSection(&cs)語句將不會返回,而處于掛起等待狀態(tài)。直到第一個線程執(zhí)行了 LeaveCriticalSection(&cs),第二個線程的EnterCriticalSection(&cs)語句才會返回,并且繼續(xù)執(zhí)行下面的操作。
這個過程實際上是通過限制有且只有一個函數進入CriticalSection變量來實現代碼段同步的。簡單地說,對于同一個CRITICAL_SECTION,當一個線程執(zhí)行了EnterCriticalSection而沒有執(zhí)行 LeaveCriticalSection的時候,其它任何一個線程都無法完全執(zhí)行EnterCriticalSection而不得不處于等待狀態(tài)。
再次強調一次,沒有任何資源被“鎖定”,CRITICAL_SECTION這個東東不是針對于資源的,而是針對于不同線程間的代碼段的!我們能夠用它來進行所謂資源的“鎖定”,其實是因為我們在任何訪問共享資源的地方都加入了EnterCriticalSection和 LeaveCriticalSection語句,使得同一時間只能夠有一個線程的代碼段訪問到該共享資源而已(其它想訪問該資源的代如果是兩個CRITICAL_SECTION,就以此類推。碼段不得不等待)。
如果是兩個CRITICAL_SECTION,就以此類推。
再舉個極端的例子,可以幫助你理解CRITICAL_SECTION這個東東:
第一個線程函數:
DWORD WINAPI ThreadFuncA(LPVOID lp) { EnterCriticalSection(&cs); for(int i=0;i <1000;i++) Sleep(1000); LeaveCriticalSection(&cs); return 0; }
第二個線程函數:
DWORD WINAPI ThreadFuncB(LPVOID lp) { EnterCriticalSection(&cs); index=2; LeaveCriticalSection(&cs); return 0; }
這種情況下,第一個線程中間總共Sleep了1000秒鐘!它顯然沒有對任何資源進行什么“有意識”的保護;而第二個線程是要訪問資源index的,但是由于第一個線程占用了cs,一直沒有Leave,而導致第二個線程不得不等上1000秒鐘……
第二個線程,真是可憐??!
這個應該很說明問題了,你會看到第二個線程在1000秒鐘之后開始執(zhí)行index=2這個語句。也就是說,CRITICAL_SECTION其實并不理會你關心的具體共享資源,它只按照自己的規(guī)律辦事~
到此這篇關于CRITICAL_SECTION用法案例詳解的文章就介紹到這了,更多相關CRITICAL_SECTION用法內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
C++中rapidjson組裝map和數組array的代碼示例
今天小編就為大家分享一篇關于C++中rapidjson組裝map和數組array的代碼示例,小編覺得內容挺不錯的,現在分享給大家,具有很好的參考價值,需要的朋友一起跟隨小編來看看吧2019-04-04