MySQL數(shù)據(jù)庫(kù)Shell import_table數(shù)據(jù)導(dǎo)入
MySQL Shell import_table數(shù)據(jù)導(dǎo)入
1. import_table介紹
這一期我們介紹一款高效的數(shù)據(jù)導(dǎo)入工具,MySQL Shell 工具集中的import_table,該工具的全稱是Parallel Table Import Utility,顧名思義,支持并發(fā)數(shù)據(jù)導(dǎo)入,該工具在MySQL Shell 8.0.23版本后,功能更加完善, 以下列舉該工具的核心功能
- 基本覆蓋了MySQL Data Load的所有功能,可以作為替代品使用
- 默認(rèn)支持并發(fā)導(dǎo)入(支持自定義chunk大小)
- 支持通配符匹配多個(gè)文件同時(shí)導(dǎo)入到一張表(非常適用于相同結(jié)構(gòu)數(shù)據(jù)匯總到一張表)
- 支持限速(對(duì)帶寬使用有要求的場(chǎng)景,非常合適)
- 支持對(duì)壓縮文件處理
- 支持導(dǎo)入到5.7及以上MySQL
2. Load Data 與 import table功能示例
該部分針對(duì)import table和Load Data相同的功能做命令示例演示,我們依舊以導(dǎo)入employees表的示例數(shù)據(jù)為例,演示MySQL Load Data的綜合場(chǎng)景
- 數(shù)據(jù)自定義順序?qū)?/li>
- 數(shù)據(jù)函數(shù)處理
- 自定義數(shù)據(jù)取值
示例數(shù)據(jù)如下:
[root@10-186-61-162 tmp]# cat employees_01.csv "10001","1953-09-02","Georgi","Facello","M","1986-06-26" "10003","1959-12-03","Parto","Bamford","M","1986-08-28" "10002","1964-06-02","Bezalel","Simmel","F","1985-11-21" "10004","1954-05-01","Chirstian","Koblick","M","1986-12-01" "10005","1955-01-21","Kyoichi","Maliniak","M","1989-09-12" "10006","1953-04-20","Anneke","Preusig","F","1989-06-02" "10007","1957-05-23","Tzvetan","Zielinski","F","1989-02-10" "10008","1958-02-19","Saniya","Kalloufi","M","1994-09-15" "10009","1952-04-19","Sumant","Peac","F","1985-02-18" "10010","1963-06-01","Duangkaew","Piveteau","F","1989-08-24"
示例表結(jié)構(gòu):
10.186.61.162:3306 employees SQL > desc emp; +-------------+---------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +-------------+---------------+------+-----+---------+-------+ | emp_no | int | NO | PRI | NULL | | | birth_date | date | NO | | NULL | | | first_name | varchar(14) | NO | | NULL | | | last_name | varchar(16) | NO | | NULL | | | full_name | varchar(64) | YES | | NULL | | -- 表新增字段,導(dǎo)出數(shù)據(jù)文件中不存在 | gender | enum('M','F') | NO | | NULL | | | hire_date | date | NO | | NULL | | | modify_date | datetime | YES | | NULL | | -- 表新增字段,導(dǎo)出數(shù)據(jù)文件中不存在 | delete_flag | varchar(1) | YES | | NULL | | -- 表新增字段,導(dǎo)出數(shù)據(jù)文件中不存在 +-------------+---------------+------+-----+---------+-------+
2.1 用Load Data方式導(dǎo)入數(shù)據(jù)
load data infile '/data/mysql/3306/tmp/employees_01.csv' into table employees.emp character set utf8mb4 fields terminated by ',' enclosed by '"' lines terminated by '\n' (@C1,@C2,@C3,@C4,@C5,@C6) set emp_no=@C1, birth_date=@C2, first_name=upper(@C3), last_name=lower(@C4), full_name=concat(first_name,' ',last_name), gender=@C5, hire_date=@C6 , modify_date=now(), delete_flag=if(hire_date<'1988-01-01','Y','N');
2.2 用import_table方式導(dǎo)入數(shù)據(jù)
util.import_table( [ "/data/mysql/3306/tmp/employees_01.csv", ], { "schema": "employees", "table": "emp", "dialect": "csv-unix", "skipRows": 0, "showProgress": True, "characterSet": "utf8mb4", "columns": [1,2,3,4,5,6], ## 文件中多少個(gè)列就用多少個(gè)序號(hào)標(biāo)識(shí)就行 "decodeColumns": { "emp_no": "@1", ## 對(duì)應(yīng)文件中的第1列 "birth_date": "@2", ## 對(duì)應(yīng)文件中的第2個(gè)列 "first_name": "upper(@3)", ## 對(duì)應(yīng)文件中的第3個(gè)列,并做轉(zhuǎn)為大寫的處理 "last_name": "lower(@4)", ## 對(duì)應(yīng)文件中的第4個(gè)列,并做轉(zhuǎn)為大寫的處理 "full_name": "concat(@3,' ',@4)", ## 將文件中的第3,4列合并成一列生成表中字段值 "gender": "@5", ## 對(duì)應(yīng)文件中的第5個(gè)列 "hire_date": "@6", ## 對(duì)應(yīng)文件中的第6個(gè)列 "modify_date": "now()", ## 用函數(shù)生成表中字段值 "delete_flag": "if(@6<'1988-01-01','Y','N')" ## 基于文件中第6列做邏輯判斷,生成表中對(duì)應(yīng)字段值 } })
3. import_table特定功能
3.1 多文件導(dǎo)入(模糊匹配)
## 在導(dǎo)入前我生成好了3分單獨(dú)的employees文件,導(dǎo)出的結(jié)構(gòu)一致 [root@10-186-61-162 tmp]# ls -lh 總用量 1.9G -rw-r----- 1 mysql mysql 579 3月 24 19:07 employees_01.csv -rw-r----- 1 mysql mysql 584 3月 24 18:48 employees_02.csv -rw-r----- 1 mysql mysql 576 3月 24 18:48 employees_03.csv -rw-r----- 1 mysql mysql 1.9G 3月 26 17:15 sbtest1.csv ## 導(dǎo)入命令,其中對(duì)對(duì)文件用employees_*做模糊匹配 util.import_table( [ "/data/mysql/3306/tmp/employees_*", ], { "schema": "employees", "table": "emp", "dialect": "csv-unix", "skipRows": 0, "showProgress": True, "characterSet": "utf8mb4", "columns": [1,2,3,4,5,6], ## 文件中多少個(gè)列就用多少個(gè)序號(hào)標(biāo)識(shí)就行 "decodeColumns": { "emp_no": "@1", ## 對(duì)應(yīng)文件中的第1列 "birth_date": "@2", ## 對(duì)應(yīng)文件中的第2個(gè)列 "first_name": "upper(@3)", ## 對(duì)應(yīng)文件中的第3個(gè)列,并做轉(zhuǎn)為大寫的處理 "last_name": "lower(@4)", ## 對(duì)應(yīng)文件中的第4個(gè)列,并做轉(zhuǎn)為大寫的處理 "full_name": "concat(@3,' ',@4)", ## 將文件中的第3,4列合并成一列生成表中字段值 "gender": "@5", ## 對(duì)應(yīng)文件中的第5個(gè)列 "hire_date": "@6", ## 對(duì)應(yīng)文件中的第6個(gè)列 "modify_date": "now()", ## 用函數(shù)生成表中字段值 "delete_flag": "if(@6<'1988-01-01','Y','N')" ## 基于文件中第6列做邏輯判斷,生成表中對(duì)應(yīng)字段值 } }) ## 導(dǎo)入命令,其中對(duì)要導(dǎo)入的文件均明確指定其路徑 util.import_table( [ "/data/mysql/3306/tmp/employees_01.csv", "/data/mysql/3306/tmp/employees_02.csv", "/data/mysql/3306/tmp/employees_03.csv" ], { "schema": "employees", "table": "emp", "dialect": "csv-unix", "skipRows": 0, "showProgress": True, "characterSet": "utf8mb4", "columns": [1,2,3,4,5,6], ## 文件中多少個(gè)列就用多少個(gè)序號(hào)標(biāo)識(shí)就行 "decodeColumns": { "emp_no": "@1", ## 對(duì)應(yīng)文件中的第1列 "birth_date": "@2", ## 對(duì)應(yīng)文件中的第2個(gè)列 "first_name": "upper(@3)", ## 對(duì)應(yīng)文件中的第3個(gè)列,并做轉(zhuǎn)為大寫的處理 "last_name": "lower(@4)", ## 對(duì)應(yīng)文件中的第4個(gè)列,并做轉(zhuǎn)為大寫的處理 "full_name": "concat(@3,' ',@4)", ## 將文件中的第3,4列合并成一列生成表中字段值 "gender": "@5", ## 對(duì)應(yīng)文件中的第5個(gè)列 "hire_date": "@6", ## 對(duì)應(yīng)文件中的第6個(gè)列 "modify_date": "now()", ## 用函數(shù)生成表中字段值 "delete_flag": "if(@6<'1988-01-01','Y','N')" ## 基于文件中第6列做邏輯判斷,生成表中對(duì)應(yīng)字段值 } })
3.2 并發(fā)導(dǎo)入
在實(shí)驗(yàn)并發(fā)導(dǎo)入前我們創(chuàng)建一張1000W的sbtest1表(大約2G數(shù)據(jù)),做并發(fā)模擬,import_table用threads參數(shù)作為并發(fā)配置, 默認(rèn)為8個(gè)并發(fā).
## 導(dǎo)出測(cè)試需要的sbtest1數(shù)據(jù) [root@10-186-61-162 tmp]# ls -lh 總用量 1.9G -rw-r----- 1 mysql mysql 579 3月 24 19:07 employees_01.csv -rw-r----- 1 mysql mysql 584 3月 24 18:48 employees_02.csv -rw-r----- 1 mysql mysql 576 3月 24 18:48 employees_03.csv -rw-r----- 1 mysql mysql 1.9G 3月 26 17:15 sbtest1.csv ## 開(kāi)啟threads為8個(gè)并發(fā) util.import_table( [ "/data/mysql/3306/tmp/sbtest1.csv", ], { "schema": "demo", "table": "sbtest1", "dialect": "csv-unix", "skipRows": 0, "showProgress": True, "characterSet": "utf8mb4", "threads": "8" })
3.3 導(dǎo)入速率控制
可以通過(guò)maxRate和threads來(lái)控制每個(gè)并發(fā)線程的導(dǎo)入數(shù)據(jù),如,當(dāng)前配置線程為4個(gè),每個(gè)線程的速率為2M/s,則最高不會(huì)超過(guò)8M/s
util.import_table( [ "/data/mysql/3306/tmp/sbtest1.csv", ], { "schema": "demo", "table": "sbtest1", "dialect": "csv-unix", "skipRows": 0, "showProgress": True, "characterSet": "utf8mb4", "threads": "4", "maxRate": "2M" })
3.4 自定義chunk大小
默認(rèn)的chunk大小為50M,我們可以調(diào)整chunk的大小,減少事務(wù)大小,如我們將chunk大小調(diào)整為1M,則每個(gè)線程每次導(dǎo)入的數(shù)據(jù)量也相應(yīng)減少
util.import_table( [ "/data/mysql/3306/tmp/sbtest1.csv", ], { "schema": "demo", "table": "sbtest1", "dialect": "csv-unix", "skipRows": 0, "showProgress": True, "characterSet": "utf8mb4", "threads": "4", "bytesPerChunk": "1M", "maxRate": "2M" })
4. Load Data vs import_table性能對(duì)比
- 使用相同庫(kù)表
- 不對(duì)數(shù)據(jù)做特殊處理,原樣導(dǎo)入
- 不修改參數(shù)默認(rèn)值,只指定必備參數(shù)
-- Load Data語(yǔ)句 load data infile '/data/mysql/3306/tmp/sbtest1.csv' into table demo.sbtest1 character set utf8mb4 fields terminated by ',' enclosed by '"' lines terminated by '\n' -- import_table語(yǔ)句 util.import_table( [ "/data/mysql/3306/tmp/sbtest1.csv", ], { "schema": "demo", "table": "sbtest1", "dialect": "csv-unix", "skipRows": 0, "showProgress": True, "characterSet": "utf8mb4" })
可以看到,Load Data耗時(shí)約5分鐘,而import_table則只要不到一半的時(shí)間即可完成數(shù)據(jù)導(dǎo)入,效率高一倍以上(虛擬機(jī)環(huán)境磁盤IO能力有限情況下)
以上就是MySQL Shell import_table數(shù)據(jù)導(dǎo)入詳情的詳細(xì)內(nèi)容,更多關(guān)于import_table數(shù)據(jù)導(dǎo)入的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Workbench連接不上阿里云服務(wù)器Ubuntu的Mysql解決方法(已測(cè))
這兩天為了解決workbench連接不上阿里云服務(wù)器的問(wèn)題,搞得頭大,網(wǎng)上搜到的教程都大同小異,但唯獨(dú)到我這就是行不通。不過(guò)好在最后終于解決了,記錄一下這個(gè)坑爹的過(guò)程,另外腳本之家小編特把這些問(wèn)題整理了一下,看完這一篇文章基本上就解決了2020-02-02MySQL中無(wú)GROUP BY情況下直接使用HAVING語(yǔ)句的問(wèn)題探究
這篇文章主要介紹了MySQL中無(wú)GROUP BY情況下直接使用HAVING語(yǔ)句的問(wèn)題探究,同時(shí)探究了該情況下MAX與MIN功能的使用情況,需要的朋友可以參考下2015-05-05MySQL常用的日期時(shí)間函數(shù)匯總(附實(shí)例)
日期時(shí)間處理對(duì)大家來(lái)說(shuō)應(yīng)該都不陌生了,下面這篇文章主要給大家介紹了關(guān)于MySQL常用的日期時(shí)間函數(shù),文中通過(guò)圖文介紹的非常詳細(xì),對(duì)大家學(xué)習(xí)或者使用mysql具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2023-03-03cmd中MySQL中文數(shù)據(jù)亂碼問(wèn)題解決方法
MySQL是默認(rèn)utf8編碼的,所建數(shù)據(jù)庫(kù)也是設(shè)置utf8編碼,使用程序可以新增中文數(shù)據(jù),在cmd中使用SQL語(yǔ)句新增數(shù)據(jù)則報(bào)錯(cuò),有類似情況的朋友可以參考下本文2014-02-02