欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

C++實(shí)現(xiàn)紅黑樹(shù)應(yīng)用實(shí)例代碼

 更新時(shí)間:2021年11月01日 15:03:41   作者:去偽存真  
紅黑樹(shù)它一種特殊的二叉查找樹(shù),這意味著它滿足二叉查找樹(shù)的特征,但是也有許多自己的特性,這篇文章主要給大家介紹了關(guān)于C++實(shí)現(xiàn)紅黑樹(shù)的相關(guān)資料,需要的朋友可以參考下

紅黑樹(shù)的應(yīng)用:

1、利用key_value對(duì),快速查找,O(logn)

  1. socket與客戶端id之間,形成映射關(guān)系(socket, id)
  2. 內(nèi)存分配管理
    1. 一整塊內(nèi)存,不斷分配小塊
    2. 每分配一次,就加入到紅黑樹(shù)
    3. 釋放的時(shí)候,在紅黑樹(shù)找到相應(yīng)的塊,然后去釋放

2、利用紅黑樹(shù)中序遍歷是順序的特性

  1. 進(jìn)程的調(diào)度
    1. 進(jìn)程處于等待狀態(tài),每個(gè)進(jìn)程都有等待的時(shí)間,在未來(lái)某個(gè)時(shí)刻會(huì)運(yùn)行,將這些進(jìn)程利用紅黑樹(shù)組織起來(lái)
    2. 在某個(gè)時(shí)刻,找到對(duì)應(yīng)時(shí)刻的節(jié)點(diǎn),然后中序遍歷,就可以把該節(jié)點(diǎn)之前的節(jié)點(diǎn)全部運(yùn)行到。

3、nginx定時(shí)器

為什么使用紅黑樹(shù)不使用哈希表?

  • 極少情況下,需要key是有序的,如定時(shí)器

二叉排序樹(shù)(bstree)

  1. 左子樹(shù) < 根 < 右子樹(shù)
  2. 中序遍歷結(jié)果是順序的
  3. 極端情況下,如果順序插入,結(jié)果就成了鏈表
    1. 為了解決這個(gè)問(wèn)題,引入了紅黑樹(shù)

紅黑樹(shù)性質(zhì)

  1. 每個(gè)節(jié)點(diǎn)是紅色的或黑色的
  2. 根節(jié)點(diǎn)是黑色的
  3. 葉子節(jié)點(diǎn)是黑色的
  4. 紅色節(jié)點(diǎn)的兩個(gè)子節(jié)點(diǎn)必須是黑色的
  5. 對(duì)每個(gè)節(jié)點(diǎn),該節(jié)點(diǎn)到其子孫節(jié)點(diǎn)的所有路徑上的包含相同數(shù)目的黑節(jié)點(diǎn)(黑高相同)
    1. 最短路徑就是全黑
    2. 最長(zhǎng)路徑就是黑紅相間

如何證明紅黑樹(shù)的正確性?

  • 采用歸納法

左旋與右旋

  • 改變?nèi)齻€(gè)方向,六根指針

紅黑樹(shù)的插入:

  1. 插入節(jié)點(diǎn)的時(shí)候,原先的樹(shù)是滿足紅黑樹(shù)性質(zhì)的
  2. 插入節(jié)點(diǎn)的顏色是紅色更容易滿足紅黑樹(shù)的性質(zhì)
  3. 插入的節(jié)點(diǎn)是紅色,且其父節(jié)點(diǎn)也是紅色的時(shí)候,需要調(diào)整

插入有三種情況:

  1. 叔父節(jié)點(diǎn)是紅色
  2. 叔父節(jié)點(diǎn)是黑色,且祖父節(jié)點(diǎn),父節(jié)點(diǎn)和插入節(jié)點(diǎn)不是一條直線
  3. 叔父節(jié)點(diǎn)是黑色,且祖父節(jié)點(diǎn),父節(jié)點(diǎn)和插入節(jié)點(diǎn)是一條直線

平衡二叉樹(shù):

  • 內(nèi)部不是color,而是一個(gè)high記錄高度,如果左右子樹(shù)高度相差超過(guò)1,就需要調(diào)整。

紅黑樹(shù)的刪除:

  1. 什么是刪除節(jié)點(diǎn)? y-> y是z的后繼節(jié)點(diǎn)
  2. 什么是軸心節(jié)點(diǎn)? x是y的右子樹(shù)
    1. 如果x是紅色,把x變成黑色
    2. 如果x是黑色,需要進(jìn)行調(diào)整

刪除y節(jié)點(diǎn),是什么顏色的時(shí)候需要調(diào)整?

  • 黑色需要調(diào)整,刪除黑色破壞了黑高
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define RED                1
#define BLACK             2

typedef int KEY_TYPE;

typedef struct _rbtree_node {
    unsigned char color;
    struct _rbtree_node *right;
    struct _rbtree_node *left;
    struct _rbtree_node *parent;
    KEY_TYPE key;
    void *value;
} rbtree_node;

typedef struct _rbtree {
    rbtree_node *root;
    rbtree_node *nil;
} rbtree;

rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) {
    while (x->left != T->nil) {
        x = x->left;
    }
    return x;
}

rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) {
    while (x->right != T->nil) {
        x = x->right;
    }
    return x;
}

rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) {
    rbtree_node *y = x->parent;

    if (x->right != T->nil) {
        return rbtree_mini(T, x->right);
    }

    while ((y != T->nil) && (x == y->right)) {
        x = y;
        y = y->parent;
    }
    return y;
}


void rbtree_left_rotate(rbtree *T, rbtree_node *x) {

    rbtree_node *y = x->right;  // x  --> y  ,  y --> x,   right --> left,  left --> right

    x->right = y->left; //1 1
    if (y->left != T->nil) { //1 2
        y->left->parent = x;
    }

    y->parent = x->parent; //1 3
    if (x->parent == T->nil) { //1 4
        T->root = y;
    } else if (x == x->parent->left) {
        x->parent->left = y;
    } else {
        x->parent->right = y;
    }

    y->left = x; //1 5
    x->parent = y; //1 6
}


void rbtree_right_rotate(rbtree *T, rbtree_node *y) {

    rbtree_node *x = y->left;

    y->left = x->right;
    if (x->right != T->nil) {
        x->right->parent = y;
    }

    x->parent = y->parent;
    if (y->parent == T->nil) {
        T->root = x;
    } else if (y == y->parent->right) {
        y->parent->right = x;
    } else {
        y->parent->left = x;
    }

    x->right = y;
    y->parent = x;
}

void rbtree_insert_fixup(rbtree *T, rbtree_node *z) {

    while (z->parent->color == RED) { //z ---> RED
        if (z->parent == z->parent->parent->left) {
            rbtree_node *y = z->parent->parent->right;
            if (y->color == RED) {
                z->parent->color = BLACK;
                y->color = BLACK;
                z->parent->parent->color = RED;

                z = z->parent->parent; //z --> RED
            } else {

                if (z == z->parent->right) {
                    z = z->parent;
                    rbtree_left_rotate(T, z);
                }

                z->parent->color = BLACK;
                z->parent->parent->color = RED;
                rbtree_right_rotate(T, z->parent->parent);
            }
        }else {
            rbtree_node *y = z->parent->parent->left;
            if (y->color == RED) {
                z->parent->color = BLACK;
                y->color = BLACK;
                z->parent->parent->color = RED;

                z = z->parent->parent; //z --> RED
            } else {
                if (z == z->parent->left) {
                    z = z->parent;
                    rbtree_right_rotate(T, z);
                }

                z->parent->color = BLACK;
                z->parent->parent->color = RED;
                rbtree_left_rotate(T, z->parent->parent);
            }
        }
        
    }

    T->root->color = BLACK;
}


void rbtree_insert(rbtree *T, rbtree_node *z) {

    rbtree_node *y = T->nil;
    rbtree_node *x = T->root;

    while (x != T->nil) {
        y = x;
        if (z->key < x->key) {
            x = x->left;
        } else if (z->key > x->key) {
            x = x->right;
        } else { //Exist
            return ;
        }
    }

    z->parent = y;
    if (y == T->nil) {
        T->root = z;
    } else if (z->key < y->key) {
        y->left = z;
    } else {
        y->right = z;
    }

    z->left = T->nil;
    z->right = T->nil;
    z->color = RED;

    rbtree_insert_fixup(T, z);
}

void rbtree_delete_fixup(rbtree *T, rbtree_node *x) {

    while ((x != T->root) && (x->color == BLACK)) {
        if (x == x->parent->left) {

            rbtree_node *w= x->parent->right;
            if (w->color == RED) {
                w->color = BLACK;
                x->parent->color = RED;

                rbtree_left_rotate(T, x->parent);
                w = x->parent->right;
            }

            if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
                w->color = RED;
                x = x->parent;
            } else {

                if (w->right->color == BLACK) {
                    w->left->color = BLACK;
                    w->color = RED;
                    rbtree_right_rotate(T, w);
                    w = x->parent->right;
                }

                w->color = x->parent->color;
                x->parent->color = BLACK;
                w->right->color = BLACK;
                rbtree_left_rotate(T, x->parent);

                x = T->root;
            }

        } else {

            rbtree_node *w = x->parent->left;
            if (w->color == RED) {
                w->color = BLACK;
                x->parent->color = RED;
                rbtree_right_rotate(T, x->parent);
                w = x->parent->left;
            }

            if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
                w->color = RED;
                x = x->parent;
            } else {

                if (w->left->color == BLACK) {
                    w->right->color = BLACK;
                    w->color = RED;
                    rbtree_left_rotate(T, w);
                    w = x->parent->left;
                }

                w->color = x->parent->color;
                x->parent->color = BLACK;
                w->left->color = BLACK;
                rbtree_right_rotate(T, x->parent);

                x = T->root;
            }

        }
    }

    x->color = BLACK;
}

rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) {

    rbtree_node *y = T->nil;
    rbtree_node *x = T->nil;

    if ((z->left == T->nil) || (z->right == T->nil)) {
        y = z;
    } else {
        y = rbtree_successor(T, z);
    }

    if (y->left != T->nil) {
        x = y->left;
    } else if (y->right != T->nil) {
        x = y->right;
    }

    x->parent = y->parent;
    if (y->parent == T->nil) {
        T->root = x;
    } else if (y == y->parent->left) {
        y->parent->left = x;
    } else {
        y->parent->right = x;
    }

    if (y != z) {
        z->key = y->key;
        z->value = y->value;
    }

    if (y->color == BLACK) {
        rbtree_delete_fixup(T, x);
    }

    return y;
}

rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) {

    rbtree_node *node = T->root;
    while (node != T->nil) {
        if (key < node->key) {
            node = node->left;
        } else if (key > node->key) {
            node = node->right;
        } else {
            return node;
        }    
    }
    return T->nil;
}


void rbtree_traversal(rbtree *T, rbtree_node *node) {
    if (node != T->nil) {
        rbtree_traversal(T, node->left);
        printf("key:%d, color:%d\n", node->key, node->color);
        rbtree_traversal(T, node->right);
    }
}

int main() {

    int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15};

    rbtree *T = (rbtree *)malloc(sizeof(rbtree));
    if (T == NULL) {
        printf("malloc failed\n");
        return -1;
    }
    
    T->nil = (rbtree_node*)malloc(sizeof(rbtree_node));
    T->nil->color = BLACK;
    T->root = T->nil;

    rbtree_node *node = T->nil;
    int i = 0;
    for (i = 0;i < 20;i ++) {
        node = (rbtree_node*)malloc(sizeof(rbtree_node));
        node->key = keyArray[i];
        node->value = NULL;

        rbtree_insert(T, node);
        
    }

    rbtree_traversal(T, T->root);
    printf("----------------------------------------\n");

    for (i = 0;i < 20;i ++) {

        rbtree_node *node = rbtree_search(T, keyArray[i]);
        rbtree_node *cur = rbtree_delete(T, node);
        free(cur);

        rbtree_traversal(T, T->root);
        printf("----------------------------------------\n");
    }
  
}

總結(jié)

到此這篇關(guān)于C++實(shí)現(xiàn)紅黑樹(shù)的文章就介紹到這了,更多相關(guān)C++實(shí)現(xiàn)紅黑樹(shù)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

最新評(píng)論