C++實(shí)現(xiàn)紅黑樹應(yīng)用實(shí)例代碼
紅黑樹的應(yīng)用:
1、利用key_value對,快速查找,O(logn)
- socket與客戶端id之間,形成映射關(guān)系(socket, id)
- 內(nèi)存分配管理
- 一整塊內(nèi)存,不斷分配小塊
- 每分配一次,就加入到紅黑樹
- 釋放的時(shí)候,在紅黑樹找到相應(yīng)的塊,然后去釋放
2、利用紅黑樹中序遍歷是順序的特性
- 進(jìn)程的調(diào)度
- 進(jìn)程處于等待狀態(tài),每個(gè)進(jìn)程都有等待的時(shí)間,在未來某個(gè)時(shí)刻會運(yùn)行,將這些進(jìn)程利用紅黑樹組織起來
- 在某個(gè)時(shí)刻,找到對應(yīng)時(shí)刻的節(jié)點(diǎn),然后中序遍歷,就可以把該節(jié)點(diǎn)之前的節(jié)點(diǎn)全部運(yùn)行到。
3、nginx定時(shí)器
為什么使用紅黑樹不使用哈希表?
- 極少情況下,需要key是有序的,如定時(shí)器
二叉排序樹(bstree)
- 左子樹 < 根 < 右子樹
- 中序遍歷結(jié)果是順序的
- 極端情況下,如果順序插入,結(jié)果就成了鏈表
- 為了解決這個(gè)問題,引入了紅黑樹
- 為了解決這個(gè)問題,引入了紅黑樹
紅黑樹性質(zhì)
- 每個(gè)節(jié)點(diǎn)是紅色的或黑色的
- 根節(jié)點(diǎn)是黑色的
- 葉子節(jié)點(diǎn)是黑色的
- 紅色節(jié)點(diǎn)的兩個(gè)子節(jié)點(diǎn)必須是黑色的
- 對每個(gè)節(jié)點(diǎn),該節(jié)點(diǎn)到其子孫節(jié)點(diǎn)的所有路徑上的包含相同數(shù)目的黑節(jié)點(diǎn)(黑高相同)
- 最短路徑就是全黑
- 最長路徑就是黑紅相間
如何證明紅黑樹的正確性?
- 采用歸納法
左旋與右旋
- 改變?nèi)齻€(gè)方向,六根指針
紅黑樹的插入:
- 插入節(jié)點(diǎn)的時(shí)候,原先的樹是滿足紅黑樹性質(zhì)的
- 插入節(jié)點(diǎn)的顏色是紅色更容易滿足紅黑樹的性質(zhì)
- 插入的節(jié)點(diǎn)是紅色,且其父節(jié)點(diǎn)也是紅色的時(shí)候,需要調(diào)整
插入有三種情況:
- 叔父節(jié)點(diǎn)是紅色
- 叔父節(jié)點(diǎn)是黑色,且祖父節(jié)點(diǎn),父節(jié)點(diǎn)和插入節(jié)點(diǎn)不是一條直線
- 叔父節(jié)點(diǎn)是黑色,且祖父節(jié)點(diǎn),父節(jié)點(diǎn)和插入節(jié)點(diǎn)是一條直線
平衡二叉樹:
- 內(nèi)部不是color,而是一個(gè)high記錄高度,如果左右子樹高度相差超過1,就需要調(diào)整。
紅黑樹的刪除:
- 什么是刪除節(jié)點(diǎn)? y-> y是z的后繼節(jié)點(diǎn)
- 什么是軸心節(jié)點(diǎn)? x是y的右子樹
- 如果x是紅色,把x變成黑色
- 如果x是黑色,需要進(jìn)行調(diào)整
刪除y節(jié)點(diǎn),是什么顏色的時(shí)候需要調(diào)整?
- 黑色需要調(diào)整,刪除黑色破壞了黑高
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define RED 1
#define BLACK 2
typedef int KEY_TYPE;
typedef struct _rbtree_node {
unsigned char color;
struct _rbtree_node *right;
struct _rbtree_node *left;
struct _rbtree_node *parent;
KEY_TYPE key;
void *value;
} rbtree_node;
typedef struct _rbtree {
rbtree_node *root;
rbtree_node *nil;
} rbtree;
rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) {
while (x->left != T->nil) {
x = x->left;
}
return x;
}
rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) {
while (x->right != T->nil) {
x = x->right;
}
return x;
}
rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) {
rbtree_node *y = x->parent;
if (x->right != T->nil) {
return rbtree_mini(T, x->right);
}
while ((y != T->nil) && (x == y->right)) {
x = y;
y = y->parent;
}
return y;
}
void rbtree_left_rotate(rbtree *T, rbtree_node *x) {
rbtree_node *y = x->right; // x --> y , y --> x, right --> left, left --> right
x->right = y->left; //1 1
if (y->left != T->nil) { //1 2
y->left->parent = x;
}
y->parent = x->parent; //1 3
if (x->parent == T->nil) { //1 4
T->root = y;
} else if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->left = x; //1 5
x->parent = y; //1 6
}
void rbtree_right_rotate(rbtree *T, rbtree_node *y) {
rbtree_node *x = y->left;
y->left = x->right;
if (x->right != T->nil) {
x->right->parent = y;
}
x->parent = y->parent;
if (y->parent == T->nil) {
T->root = x;
} else if (y == y->parent->right) {
y->parent->right = x;
} else {
y->parent->left = x;
}
x->right = y;
y->parent = x;
}
void rbtree_insert_fixup(rbtree *T, rbtree_node *z) {
while (z->parent->color == RED) { //z ---> RED
if (z->parent == z->parent->parent->left) {
rbtree_node *y = z->parent->parent->right;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent; //z --> RED
} else {
if (z == z->parent->right) {
z = z->parent;
rbtree_left_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_right_rotate(T, z->parent->parent);
}
}else {
rbtree_node *y = z->parent->parent->left;
if (y->color == RED) {
z->parent->color = BLACK;
y->color = BLACK;
z->parent->parent->color = RED;
z = z->parent->parent; //z --> RED
} else {
if (z == z->parent->left) {
z = z->parent;
rbtree_right_rotate(T, z);
}
z->parent->color = BLACK;
z->parent->parent->color = RED;
rbtree_left_rotate(T, z->parent->parent);
}
}
}
T->root->color = BLACK;
}
void rbtree_insert(rbtree *T, rbtree_node *z) {
rbtree_node *y = T->nil;
rbtree_node *x = T->root;
while (x != T->nil) {
y = x;
if (z->key < x->key) {
x = x->left;
} else if (z->key > x->key) {
x = x->right;
} else { //Exist
return ;
}
}
z->parent = y;
if (y == T->nil) {
T->root = z;
} else if (z->key < y->key) {
y->left = z;
} else {
y->right = z;
}
z->left = T->nil;
z->right = T->nil;
z->color = RED;
rbtree_insert_fixup(T, z);
}
void rbtree_delete_fixup(rbtree *T, rbtree_node *x) {
while ((x != T->root) && (x->color == BLACK)) {
if (x == x->parent->left) {
rbtree_node *w= x->parent->right;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rbtree_left_rotate(T, x->parent);
w = x->parent->right;
}
if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
rbtree_right_rotate(T, w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
rbtree_left_rotate(T, x->parent);
x = T->root;
}
} else {
rbtree_node *w = x->parent->left;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rbtree_right_rotate(T, x->parent);
w = x->parent->left;
}
if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
w->color = RED;
x = x->parent;
} else {
if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
rbtree_left_rotate(T, w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
rbtree_right_rotate(T, x->parent);
x = T->root;
}
}
}
x->color = BLACK;
}
rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) {
rbtree_node *y = T->nil;
rbtree_node *x = T->nil;
if ((z->left == T->nil) || (z->right == T->nil)) {
y = z;
} else {
y = rbtree_successor(T, z);
}
if (y->left != T->nil) {
x = y->left;
} else if (y->right != T->nil) {
x = y->right;
}
x->parent = y->parent;
if (y->parent == T->nil) {
T->root = x;
} else if (y == y->parent->left) {
y->parent->left = x;
} else {
y->parent->right = x;
}
if (y != z) {
z->key = y->key;
z->value = y->value;
}
if (y->color == BLACK) {
rbtree_delete_fixup(T, x);
}
return y;
}
rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) {
rbtree_node *node = T->root;
while (node != T->nil) {
if (key < node->key) {
node = node->left;
} else if (key > node->key) {
node = node->right;
} else {
return node;
}
}
return T->nil;
}
void rbtree_traversal(rbtree *T, rbtree_node *node) {
if (node != T->nil) {
rbtree_traversal(T, node->left);
printf("key:%d, color:%d\n", node->key, node->color);
rbtree_traversal(T, node->right);
}
}
int main() {
int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15};
rbtree *T = (rbtree *)malloc(sizeof(rbtree));
if (T == NULL) {
printf("malloc failed\n");
return -1;
}
T->nil = (rbtree_node*)malloc(sizeof(rbtree_node));
T->nil->color = BLACK;
T->root = T->nil;
rbtree_node *node = T->nil;
int i = 0;
for (i = 0;i < 20;i ++) {
node = (rbtree_node*)malloc(sizeof(rbtree_node));
node->key = keyArray[i];
node->value = NULL;
rbtree_insert(T, node);
}
rbtree_traversal(T, T->root);
printf("----------------------------------------\n");
for (i = 0;i < 20;i ++) {
rbtree_node *node = rbtree_search(T, keyArray[i]);
rbtree_node *cur = rbtree_delete(T, node);
free(cur);
rbtree_traversal(T, T->root);
printf("----------------------------------------\n");
}
}
總結(jié)
到此這篇關(guān)于C++實(shí)現(xiàn)紅黑樹的文章就介紹到這了,更多相關(guān)C++實(shí)現(xiàn)紅黑樹內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
C語言中字符串和數(shù)字的相互轉(zhuǎn)換實(shí)現(xiàn)代碼
以下是對C語言中字符串和數(shù)字的相互轉(zhuǎn)換實(shí)現(xiàn)代碼進(jìn)行了分析介紹,需要的朋友可以參考下2013-07-07
深入C語言內(nèi)存區(qū)域分配(進(jìn)程的各個(gè)段)詳解
一般情況下,一個(gè)可執(zhí)行二進(jìn)制程序(更確切的說,在Linux操作系統(tǒng)下為一個(gè)進(jìn)程單元,在UC/OSII中被稱為任務(wù))在存儲(沒有調(diào)入到內(nèi)存運(yùn)行)時(shí)擁有3個(gè)部分,分別是代碼段(text)、數(shù)據(jù)段(data)和BSS段。這3個(gè)部分一起組成了該可執(zhí)行程序的文件2013-07-07
如何使用C語言實(shí)現(xiàn)平衡二叉樹數(shù)據(jù)結(jié)構(gòu)算法
對于判斷是否為平衡二叉樹而言,我們需要知道以下特性:是一個(gè)二叉樹也是一個(gè)二叉排序樹該樹的每個(gè)結(jié)點(diǎn)上的(深度)左子樹 - 右子樹的值為平衡因子(BF(Balance Factor))該樹的每一個(gè)節(jié)點(diǎn)的左子樹和右子樹的高度至多等于1(平衡因子只可能是-1,0,1)2021-08-08
C++?OpenCV裁剪圖片時(shí)發(fā)生報(bào)錯(cuò)的解決方式
在圖像處理中,我們經(jīng)常根據(jù)需要截取圖像中某一區(qū)域做處理,下面這篇文章主要給大家介紹了關(guān)于C++?OpenCV裁剪圖片時(shí)發(fā)生報(bào)錯(cuò)的解決方式,文中通過圖文介紹的非常詳細(xì),需要的朋友可以參考下2022-07-07
解析C++中四種強(qiáng)制類型轉(zhuǎn)換的區(qū)別詳解
本篇文章是對C++中四種強(qiáng)制類型轉(zhuǎn)換的區(qū)別進(jìn)行了詳細(xì)的分析介紹,需要的朋友參考下2013-05-05
基于C++的攝像頭圖像采集及拼接程序的簡單實(shí)現(xiàn)
本程序是在?ubuntu14.04?平臺下實(shí)現(xiàn)的,在本項(xiàng)目目錄下,已經(jīng)有編譯生成的可執(zhí)行程序,其中Camera_to_Frmae.cpp是我們從雙攝像頭實(shí)時(shí)抓取單幀圖像的源碼,對基于C++的攝像頭圖像采集及拼接程序的實(shí)現(xiàn)感興趣的朋友一起看看吧2022-01-01

