C++ OpenCV實(shí)現(xiàn)圖像雙三次插值算法詳解
前言
近期在學(xué)習(xí)一些傳統(tǒng)的圖像處理算法,比如傳統(tǒng)的圖像插值算法等。傳統(tǒng)的圖像插值算法包括鄰近插值法、雙線性插值法和雙三次插值法,其中鄰近插值法和雙線性插值法在網(wǎng)上都有很詳細(xì)的介紹以及用c++編寫的代碼。但是,網(wǎng)上關(guān)于雙三次插值法的原理介紹雖然很多,也有對(duì)應(yīng)的代碼,但是大多都不是很詳細(xì)。因此基于自己對(duì)原理的理解,自己編寫了圖像雙三次插值算法的c++ opencv代碼,在這里記錄一下。
一、圖像雙三次插值算法原理
首先是原理部分。圖像雙三次插值的原理,就是目標(biāo)圖像的每一個(gè)像素都是由原圖上相對(duì)應(yīng)點(diǎn)周圍的4x4=16個(gè)像素經(jīng)過(guò)加權(quán)之后再相加得到的。這里的加權(quán)用到的就是三次函數(shù),這也是圖像雙三次插值算法名稱的由來(lái)(個(gè)人猜測(cè))。用到的三次函數(shù)如下圖所示:
最關(guān)鍵的問(wèn)題是,這個(gè)三次函數(shù)的輸入和輸出分別代表啥。簡(jiǎn)單來(lái)說(shuō)輸入就是原圖對(duì)應(yīng)點(diǎn)周圍相對(duì)于這點(diǎn)的4x4大小區(qū)域的坐標(biāo)值,大小在0~2之間,輸出就是這些點(diǎn)橫坐標(biāo)或者縱坐標(biāo)的權(quán)重。4個(gè)橫坐標(biāo)、4個(gè)縱坐標(biāo),對(duì)應(yīng)相乘就是4x4大小的權(quán)重矩陣,然后使用此權(quán)重矩陣對(duì)原圖相對(duì)應(yīng)的區(qū)域進(jìn)行相乘并相加就可以得到目標(biāo)圖點(diǎn)的像素。
下圖可以幫助大家更好地理解
首先,u和v是什么呢?舉一個(gè)例子,對(duì)于一幅100x100的灰度圖像,要將其放大到500x500,那么其縮放因子sx=500/100=5,sy=500/100=5?,F(xiàn)在目標(biāo)圖像是500x500,需要用原圖的100x100個(gè)像素值來(lái)填滿這500x500個(gè)空,根據(jù)src_x=i/sx和src_y=j/sy可以得到目標(biāo)像素坐標(biāo)(i,j)所對(duì)應(yīng)的原圖像素坐標(biāo)(src_x, src_y),這個(gè)src_x和src_y的小數(shù)部分就是上圖中的u和v。
理解了u和v,就可以利用u和v來(lái)計(jì)算雙三次插值算法的權(quán)重了。上面說(shuō)了三次函數(shù)的輸入是原圖對(duì)應(yīng)點(diǎn)周圍相對(duì)于這點(diǎn)的4x4大小區(qū)域的坐標(biāo)值,對(duì)于上面這幅圖而言,橫坐標(biāo)有四個(gè)輸入,分別是1+u,u,1-u,2-u;縱坐標(biāo)也有四個(gè)輸入,分別是1+v,v,1-v,2-v,根據(jù)三次函數(shù)算出權(quán)重之后兩兩相乘就是對(duì)應(yīng)的4x4大小的權(quán)重矩陣。
知道了怎么求權(quán)重矩陣之后,就可以遍歷整幅圖像進(jìn)行插值了。下面是基于自己對(duì)原理的理解編寫的c++ opencv代碼,代碼沒(méi)有做優(yōu)化,但是能夠讓大家直觀地理解圖像雙三次插值算法。
二、C++ OpenCV代碼
1.計(jì)算權(quán)重矩陣
前面說(shuō)了權(quán)重矩陣就是橫坐標(biāo)的4個(gè)輸出和縱坐標(biāo)的4個(gè)輸出相乘,因此只需要求出橫坐標(biāo)和縱坐標(biāo)相對(duì)應(yīng)的8個(gè)輸出值就行了。
代碼如下:
std::vector<double> getWeight(double c, double a = 0.5) { //c就是u和v,橫坐標(biāo)和縱坐標(biāo)的輸出計(jì)算方式一樣 std::vector<double> temp(4); temp[0] = 1 + c; temp[1] = c; temp[2] = 1 - c; temp[3] = 2 - c; //y(x) = (a+2)|x|*|x|*|x| - (a+3)|x|*|x| + 1 |x|<=1 //y(x) = a|x|*|x|*|x| - 5a|x|*|x| + 8a|x| - 4a 1<|x|<2 std::vector<double> weight(4); weight[0] = (a * pow(abs(temp[0]), 3) - 5 * a * pow(abs(temp[0]), 2) + 8 * a * abs(temp[0]) - 4 * a); weight[1] = (a + 2) * pow(abs(temp[1]), 3) - (a + 3) * pow(abs(temp[1]), 2) + 1; weight[2] = (a + 2) * pow(abs(temp[2]), 3) - (a + 3) * pow(abs(temp[2]), 2) + 1; weight[3] = (a * pow(abs(temp[3]), 3) - 5 * a * pow(abs(temp[3]), 2) + 8 * a * abs(temp[3]) - 4 * a); return weight; }
2.遍歷插值
代碼如下:
void bicubic(cv::Mat& src, cv::Mat& dst, int dst_rows, int dst_cols) { dst.create(dst_rows, dst_cols, src.type()); double sy = static_cast<double>(dst_rows) / static_cast<double>(src.rows); double sx = static_cast<double>(dst_cols) / static_cast<double>(src.cols); cv::Mat border; cv::copyMakeBorder(src, border, 1, 1, 1, 1, cv::BORDER_REFLECT_101); //處理灰度圖 if (src.channels() == 1) { for (int i = 1; i < dst_rows + 1; ++i) { int src_y = (i + 0.5) / sy - 0.5; //做了幾何中心對(duì)齊 if (src_y < 0) src_y = 0; if (src_y > src.rows - 1) src_y = src.rows - 1; src_y += 1; //目標(biāo)圖像點(diǎn)坐標(biāo)對(duì)應(yīng)原圖點(diǎn)坐標(biāo)的4個(gè)縱坐標(biāo) int i1 = std::floor(src_y); int i2 = std::ceil(src_y); int i0 = i1 - 1; int i3 = i2 + 1; double u = src_y - static_cast<int64>(i1); std::vector<double> weight_x = getWeight(u); for (int j = 1; j < dst_cols + 1; ++j) { int src_x = (j + 0.5) / sy - 0.5; if (src_x < 0) src_x = 0; if (src_x > src.rows - 1) src_x = src.rows - 1; src_x += 1; //目標(biāo)圖像點(diǎn)坐標(biāo)對(duì)應(yīng)原圖點(diǎn)坐標(biāo)的4個(gè)橫坐標(biāo) int j1 = std::floor(src_x); int j2 = std::ceil(src_x); int j0 = j1 - 1; int j3 = j2 + 1; double v = src_x - static_cast<int64>(j1); std::vector<double> weight_y = getWeight(v); //目標(biāo)點(diǎn)像素對(duì)應(yīng)原圖點(diǎn)像素周圍4x4區(qū)域的加權(quán)計(jì)算(插值) double pix = weight_x[0] * weight_y[0] * border.at<uchar>(i0, j0) + weight_x[1] * weight_y[0] * border.at<uchar>(i0, j1) + weight_x[2] * weight_y[0] * border.at<uchar>(i0, j2) + weight_x[3] * weight_y[0] * border.at<uchar>(i0, j3) + weight_x[0] * weight_y[1] * border.at<uchar>(i1, j0) + weight_x[1] * weight_y[1] * border.at<uchar>(i1, j1) + weight_x[2] * weight_y[1] * border.at<uchar>(i1, j2) + weight_x[3] * weight_y[1] * border.at<uchar>(i1, j3) + weight_x[0] * weight_y[2] * border.at<uchar>(i2, j0) + weight_x[1] * weight_y[2] * border.at<uchar>(i2, j1) + weight_x[2] * weight_y[2] * border.at<uchar>(i2, j2) + weight_x[3] * weight_y[2] * border.at<uchar>(i2, j3) + weight_x[0] * weight_y[3] * border.at<uchar>(i3, j0) + weight_x[1] * weight_y[3] * border.at<uchar>(i3, j1) + weight_x[2] * weight_y[3] * border.at<uchar>(i3, j2) + weight_x[3] * weight_y[3] * border.at<uchar>(i3, j3); if (pix < 0) pix = 0; if (pix > 255)pix = 255; dst.at<uchar>(i - 1, j - 1) = static_cast<uchar>(pix); } } } //處理彩色圖像 else if (src.channels() == 3) { for (int i = 1; i < dst_rows + 1; ++i) { int src_y = (i + 0.5) / sy - 0.5; if (src_y < 0) src_y = 0; if (src_y > src.rows - 1) src_y = src.rows - 1; src_y += 1; int i1 = std::floor(src_y); int i2 = std::ceil(src_y); int i0 = i1 - 1; int i3 = i2 + 1; double u = src_y - static_cast<int64>(i1); std::vector<double> weight_y = getWeight(u); for (int j = 1; j < dst_cols + 1; ++j) { int src_x = (j + 0.5) / sy - 0.5; if (src_x < 0) src_x = 0; if (src_x > src.rows - 1) src_x = src.rows - 1; src_x += 1; int j1 = std::floor(src_x); int j2 = std::ceil(src_x); int j0 = j1 - 1; int j3 = j2 + 1; double v = src_x - static_cast<int64>(j1); std::vector<double> weight_x = getWeight(v); cv::Vec3b pix; pix[0] = weight_x[0] * weight_y[0] * border.at<cv::Vec3b>(i0, j0)[0] + weight_x[1] * weight_y[0] * border.at<cv::Vec3b>(i0, j1)[0] + weight_x[2] * weight_y[0] * border.at<cv::Vec3b>(i0, j2)[0] + weight_x[3] * weight_y[0] * border.at<cv::Vec3b>(i0, j3)[0] + weight_x[0] * weight_y[1] * border.at<cv::Vec3b>(i1, j0)[0] + weight_x[1] * weight_y[1] * border.at<cv::Vec3b>(i1, j1)[0] + weight_x[2] * weight_y[1] * border.at<cv::Vec3b>(i1, j2)[0] + weight_x[3] * weight_y[1] * border.at<cv::Vec3b>(i1, j3)[0] + weight_x[0] * weight_y[2] * border.at<cv::Vec3b>(i2, j0)[0] + weight_x[1] * weight_y[2] * border.at<cv::Vec3b>(i2, j1)[0] + weight_x[2] * weight_y[2] * border.at<cv::Vec3b>(i2, j2)[0] + weight_x[3] * weight_y[2] * border.at<cv::Vec3b>(i2, j3)[0] + weight_x[0] * weight_y[3] * border.at<cv::Vec3b>(i3, j0)[0] + weight_x[1] * weight_y[3] * border.at<cv::Vec3b>(i3, j1)[0] + weight_x[2] * weight_y[3] * border.at<cv::Vec3b>(i3, j2)[0] + weight_x[3] * weight_y[3] * border.at<cv::Vec3b>(i3, j3)[0]; pix[1] = weight_x[0] * weight_y[0] * border.at<cv::Vec3b>(i0, j0)[1] + weight_x[1] * weight_y[0] * border.at<cv::Vec3b>(i0, j1)[1] + weight_x[2] * weight_y[0] * border.at<cv::Vec3b>(i0, j2)[1] + weight_x[3] * weight_y[0] * border.at<cv::Vec3b>(i0, j3)[1] + weight_x[0] * weight_y[1] * border.at<cv::Vec3b>(i1, j0)[1] + weight_x[1] * weight_y[1] * border.at<cv::Vec3b>(i1, j1)[1] + weight_x[2] * weight_y[1] * border.at<cv::Vec3b>(i1, j2)[1] + weight_x[3] * weight_y[1] * border.at<cv::Vec3b>(i1, j3)[1] + weight_x[0] * weight_y[2] * border.at<cv::Vec3b>(i2, j0)[1] + weight_x[1] * weight_y[2] * border.at<cv::Vec3b>(i2, j1)[1] + weight_x[2] * weight_y[2] * border.at<cv::Vec3b>(i2, j2)[1] + weight_x[3] * weight_y[2] * border.at<cv::Vec3b>(i2, j3)[1] + weight_x[0] * weight_y[3] * border.at<cv::Vec3b>(i3, j0)[1] + weight_x[1] * weight_y[3] * border.at<cv::Vec3b>(i3, j1)[1] + weight_x[2] * weight_y[3] * border.at<cv::Vec3b>(i3, j2)[1] + weight_x[3] * weight_y[3] * border.at<cv::Vec3b>(i3, j3)[1]; pix[2] = weight_x[0] * weight_y[0] * border.at<cv::Vec3b>(i0, j0)[2] + weight_x[1] * weight_y[0] * border.at<cv::Vec3b>(i0, j1)[2] + weight_x[2] * weight_y[0] * border.at<cv::Vec3b>(i0, j2)[2] + weight_x[3] * weight_y[0] * border.at<cv::Vec3b>(i0, j3)[2] + weight_x[0] * weight_y[1] * border.at<cv::Vec3b>(i1, j0)[2] + weight_x[1] * weight_y[1] * border.at<cv::Vec3b>(i1, j1)[2] + weight_x[2] * weight_y[1] * border.at<cv::Vec3b>(i1, j2)[2] + weight_x[3] * weight_y[1] * border.at<cv::Vec3b>(i1, j3)[2] + weight_x[0] * weight_y[2] * border.at<cv::Vec3b>(i2, j0)[2] + weight_x[1] * weight_y[2] * border.at<cv::Vec3b>(i2, j1)[2] + weight_x[2] * weight_y[2] * border.at<cv::Vec3b>(i2, j2)[2] + weight_x[3] * weight_y[2] * border.at<cv::Vec3b>(i2, j3)[2] + weight_x[0] * weight_y[3] * border.at<cv::Vec3b>(i3, j0)[2] + weight_x[1] * weight_y[3] * border.at<cv::Vec3b>(i3, j1)[2] + weight_x[2] * weight_y[3] * border.at<cv::Vec3b>(i3, j2)[2] + weight_x[3] * weight_y[3] * border.at<cv::Vec3b>(i3, j3)[2]; for (int i = 0; i < src.channels(); ++i) { if (pix[i] < 0) pix = 0; if (pix[i] > 255)pix = 255; } dst.at<cv::Vec3b>(i - 1, j - 1) = static_cast<cv::Vec3b>(pix); } } } }
3. 測(cè)試及結(jié)果
int main() { cv::Mat src = cv::imread("C:\\Users\\Echo\\Pictures\\Saved Pictures\\bilateral.png"); cv::Mat dst; bicubic(src, dst, 309/0.5, 338/0.5); cv::imshow("gray", dst); cv::imshow("src", src); cv::waitKey(0); }
彩色圖像(放大兩倍)
以上就是C++ OpenCV實(shí)現(xiàn)圖像雙三次插值算法詳解的詳細(xì)內(nèi)容,更多關(guān)于C++ OpenCV 圖像雙三次插值算法的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
C語(yǔ)言 詳細(xì)分析結(jié)構(gòu)體的內(nèi)存對(duì)齊
C 數(shù)組允許定義可存儲(chǔ)相同類型數(shù)據(jù)項(xiàng)的變量,結(jié)構(gòu)是 C 編程中另一種用戶自定義的可用的數(shù)據(jù)類型,它允許你存儲(chǔ)不同類型的數(shù)據(jù)項(xiàng),本篇讓我們來(lái)了解C 的結(jié)構(gòu)體內(nèi)存對(duì)齊2022-03-03關(guān)于背包問(wèn)題的一些理解和應(yīng)用
這篇文章主要介紹了關(guān)于背包問(wèn)題的一些理解和應(yīng)用,本文可以說(shuō)是背包問(wèn)題九講的補(bǔ)充、讀后感,需要的朋友可以參考下2014-08-08C語(yǔ)言棧的表示與實(shí)現(xiàn)實(shí)例詳解
這篇文章主要介紹了C語(yǔ)言棧的表示與實(shí)現(xiàn),對(duì)于數(shù)據(jù)結(jié)構(gòu)與算法的研究有一定的借鑒價(jià)值,需要的朋友可以參考下2014-07-07源碼分析C++是如何實(shí)現(xiàn)string的
我們平時(shí)使用C++開(kāi)發(fā)過(guò)程中或多或少都會(huì)使用std::string,但您了解string具體是如何實(shí)現(xiàn)的嗎,本文小編就帶大家從源碼角度分析一下2023-04-04