Java字符串拼接的五種方法及性能比較分析(從執(zhí)行100次到90萬次)
> 字符串拼接一般使用“+”,但是“+”不能滿足大批量數(shù)據(jù)的處理,Java中有以下五種方法處理字符串拼接,各有優(yōu)缺點(diǎn),程序開發(fā)應(yīng)選擇合適的方法實(shí)現(xiàn)。
1. 加號(hào) “+”
2. String contact() 方法
3. StringUtils.join() 方法
4. StringBuffer append() 方法
5. StringBuilder append() 方法
> 經(jīng)過簡單的程序測試,從執(zhí)行100次到90萬次的時(shí)間開銷如下表:
?由此可以看出:
1. 方法1 加號(hào) “+” 拼接 和 方法2 String contact() 方法 適用于小數(shù)據(jù)量的操作,代碼簡潔方便,加號(hào)“+” 更符合我們的編碼和閱讀習(xí)慣;
2. 方法3 StringUtils.join() 方法 適用于將ArrayList轉(zhuǎn)換成字符串,就算90萬條數(shù)據(jù)也只需68ms,可以省掉循環(huán)讀取ArrayList的代碼;
3. 方法4 StringBuffer append() 方法 和 方法5 StringBuilder append() 方法 其實(shí)他們的本質(zhì)是一樣的,都是繼承自AbstractStringBuilder,效率最高,大批量的數(shù)據(jù)處理最好選擇這兩種方法。
4. 方法1 加號(hào) “+” 拼接 和 方法2 String contact() 方法 的時(shí)間和空間成本都很高(分析在本文末尾),不能用來做批量數(shù)據(jù)的處理。
> 源代碼,供參考
package cnblogs.twzheng.lab2; /** * @author Tan Wenzheng * */ import java.util.ArrayList; import java.util.List; import org.apache.commons.lang3.StringUtils; public class TestString { private static final int max = 100; public void testPlus() { System.out.println(">>> testPlus() <<<"); String str = ""; long start = System.currentTimeMillis(); for (int i = 0; i < max; i++) { str = str + "a"; } long end = System.currentTimeMillis(); long cost = end - start; System.out.println(" {str + \"a\"} cost=" + cost + " ms"); } public void testConcat() { System.out.println(">>> testConcat() <<<"); String str = ""; long start = System.currentTimeMillis(); for (int i = 0; i < max; i++) { str = str.concat("a"); } long end = System.currentTimeMillis(); long cost = end - start; System.out.println(" {str.concat(\"a\")} cost=" + cost + " ms"); } public void testJoin() { System.out.println(">>> testJoin() <<<"); long start = System.currentTimeMillis(); List<String> list = new ArrayList<String>(); for (int i = 0; i < max; i++) { list.add("a"); } long end1 = System.currentTimeMillis(); long cost1 = end1 - start; StringUtils.join(list, ""); long end = System.currentTimeMillis(); long cost = end - end1; System.out.println(" {list.add(\"a\")} cost1=" + cost1 + " ms"); System.out.println(" {StringUtils.join(list, \"\")} cost=" + cost + " ms"); } public void testStringBuffer() { System.out.println(">>> testStringBuffer() <<<"); long start = System.currentTimeMillis(); StringBuffer strBuffer = new StringBuffer(); for (int i = 0; i < max; i++) { strBuffer.append("a"); } strBuffer.toString(); long end = System.currentTimeMillis(); long cost = end - start; System.out.println(" {strBuffer.append(\"a\")} cost=" + cost + " ms"); } public void testStringBuilder() { System.out.println(">>> testStringBuilder() <<<"); long start = System.currentTimeMillis(); StringBuilder strBuilder = new StringBuilder(); for (int i = 0; i < max; i++) { strBuilder.append("a"); } strBuilder.toString(); long end = System.currentTimeMillis(); long cost = end - start; System.out .println(" {strBuilder.append(\"a\")} cost=" + cost + " ms"); } }
> 測試結(jié)果:
1. 執(zhí)行100次, private static final int max = 100;
>>> testPlus() <<< {str + "a"} cost=0 ms >>> testConcat() <<< {str.concat("a")} cost=0 ms >>> testJoin() <<< {list.add("a")} cost1=0 ms {StringUtils.join(list, "")} cost=20 ms >>> testStringBuffer() <<< {strBuffer.append("a")} cost=0 ms >>> testStringBuilder() <<< {strBuilder.append("a")} cost=0 ms
2. 執(zhí)行1000次, private static final int max = 1000;
>>> testPlus() <<< {str + "a"} cost=10 ms >>> testConcat() <<< {str.concat("a")} cost=0 ms >>> testJoin() <<< {list.add("a")} cost1=0 ms {StringUtils.join(list, "")} cost=20 ms >>> testStringBuffer() <<< {strBuffer.append("a")} cost=0 ms >>> testStringBuilder() <<< {strBuilder.append("a")} cost=0 ms
3. 執(zhí)行1萬次, private static final int max = 10000;
>>> testPlus() <<< {str + "a"} cost=150 ms >>> testConcat() <<< {str.concat("a")} cost=70 ms >>> testJoin() <<< {list.add("a")} cost1=0 ms {StringUtils.join(list, "")} cost=30 ms >>> testStringBuffer() <<< {strBuffer.append("a")} cost=0 ms >>> testStringBuilder() <<< {strBuilder.append("a")} cost=0 ms
4. 執(zhí)行10萬次, private static final int max = 100000;
>>> testPlus() <<< {str + "a"} cost=4198 ms >>> testConcat() <<< {str.concat("a")} cost=1862 ms >>> testJoin() <<< {list.add("a")} cost1=21 ms {StringUtils.join(list, "")} cost=49 ms >>> testStringBuffer() <<< {strBuffer.append("a")} cost=10 ms >>> testStringBuilder() <<< {strBuilder.append("a")} cost=10 ms
5. 執(zhí)行20萬次, private static final int max = 200000;
>>> testPlus() <<< {str + "a"} cost=17196 ms >>> testConcat() <<< {str.concat("a")} cost=7653 ms >>> testJoin() <<< {list.add("a")} cost1=20 ms {StringUtils.join(list, "")} cost=51 ms >>> testStringBuffer() <<< {strBuffer.append("a")} cost=20 ms >>> testStringBuilder() <<< {strBuilder.append("a")} cost=16 ms
6. 執(zhí)行50萬次, private static final int max = 500000;
>>> testPlus() <<< {str + "a"} cost=124693 ms >>> testConcat() <<< {str.concat("a")} cost=49439 ms >>> testJoin() <<< {list.add("a")} cost1=21 ms {StringUtils.join(list, "")} cost=50 ms >>> testStringBuffer() <<< {strBuffer.append("a")} cost=20 ms >>> testStringBuilder() <<< {strBuilder.append("a")} cost=10 ms
7. 執(zhí)行90萬次, private static final int max = 900000;
>>> testPlus() <<< {str + "a"} cost=456739 ms >>> testConcat() <<< {str.concat("a")} cost=186252 ms >>> testJoin() <<< {list.add("a")} cost1=20 ms {StringUtils.join(list, "")} cost=68 ms >>> testStringBuffer() <<< {strBuffer.append("a")} cost=30 ms >>> testStringBuilder() <<< {strBuilder.append("a")} cost=24 ms
> 查看源代碼,以及簡單分析
String contact 和 StringBuffer,StringBuilder 的源代碼都可以在Java庫里找到,有空可以研究研究。
1. 其實(shí)每次調(diào)用contact()方法就是一次數(shù)組的拷貝,雖然在內(nèi)存中是處理都是原子性操作,速度非???,但是,最后的return語句會(huì)創(chuàng)建一個(gè)新String對(duì)象,限制了concat方法的速度。
public String concat(String str) { int otherLen = str.length(); if (otherLen == 0) { return this; } int len = value.length; char buf[] = Arrays.copyOf(value, len + otherLen); str.getChars(buf, len); return new String(buf, true); }
2. StringBuffer 和 StringBuilder 的append方法都繼承自AbstractStringBuilder,整個(gè)邏輯都只做字符數(shù)組的加長,拷貝,到最后也不會(huì)創(chuàng)建新的String對(duì)象,所以速度很快,完成拼接處理后在程序中用strBuffer.toString()來得到最終的字符串。
/** * Appends the specified string to this character sequence. * <p> * The characters of the {@code String} argument are appended, in * order, increasing the length of this sequence by the length of the * argument. If {@code str} is {@code null}, then the four * characters {@code "null"} are appended. * <p> * Let <i>n</i> be the length of this character sequence just prior to * execution of the {@code append} method. Then the character at * index <i>k</i> in the new character sequence is equal to the character * at index <i>k</i> in the old character sequence, if <i>k</i> is less * than <i>n</i>; otherwise, it is equal to the character at index * <i>k-n</i> in the argument {@code str}. * * @param str a string. * @return a reference to this object. */ public AbstractStringBuilder append(String str) { if (str == null) str = "null"; int len = str.length(); ensureCapacityInternal(count + len); str.getChars(0, len, value, count); count += len; return this; }
/** * This method has the same contract as ensureCapacity, but is * never synchronized. */ private void ensureCapacityInternal(int minimumCapacity) { // overflow-conscious code if (minimumCapacity - value.length > 0) expandCapacity(minimumCapacity); } /** * This implements the expansion semantics of ensureCapacity with no * size check or synchronization. */ void expandCapacity(int minimumCapacity) { int newCapacity = value.length * 2 + 2; if (newCapacity - minimumCapacity < 0) newCapacity = minimumCapacity; if (newCapacity < 0) { if (minimumCapacity < 0) // overflow throw new OutOfMemoryError(); newCapacity = Integer.MAX_VALUE; } value = Arrays.copyOf(value, newCapacity); }
3. 字符串的加號(hào)“+” 方法, 雖然編譯器對(duì)其做了優(yōu)化,使用StringBuilder的append方法進(jìn)行追加,但是每循環(huán)一次都會(huì)創(chuàng)建一個(gè)StringBuilder對(duì)象,且都會(huì)調(diào)用toString方法轉(zhuǎn)換成字符串,所以開銷很大。
注:執(zhí)行一次字符串“+”,相當(dāng)于 str = new StringBuilder(str).append("a").toString();
4. 本文開頭的地方統(tǒng)計(jì)了時(shí)間開銷,根據(jù)上述分析再想想空間的開銷。常說拿空間換時(shí)間,反過來是不是拿時(shí)間換到了空間呢,但是在這里,其實(shí)時(shí)間是消耗在了重復(fù)的不必要的工作上(生成新的對(duì)象,toString方法),所以對(duì)大批量數(shù)據(jù)做處理時(shí),加號(hào)“+” 和 contact 方法絕對(duì)不能用,時(shí)間和空間成本都很高。
到此這篇關(guān)于Java字符串拼接的五種方法及性能比較分析(從執(zhí)行100次到90萬次)的文章就介紹到這了,更多相關(guān)Java字符串拼接內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!?
相關(guān)文章
Java String 和StringBuffer的詳解及區(qū)別
這篇文章主要介紹了Java String 和StringBuffer的詳解及區(qū)別的相關(guān)資料,需要的朋友可以參考下2017-05-05Java實(shí)現(xiàn)插入排序,希爾排序和歸并排序
這篇文章主要為大家詳細(xì)介紹了插入排序,希爾排序和歸并排序的多種語言的實(shí)現(xiàn)(JavaScript、Python、Go語言、Java),感興趣的小伙伴可以了解一下2022-12-12如何基于Autowired對(duì)構(gòu)造函數(shù)進(jìn)行注釋
這篇文章主要介紹了如何基于Autowired對(duì)構(gòu)造函數(shù)進(jìn)行注釋,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-10-10Java rmi遠(yuǎn)程方法調(diào)用基本用法解析
這篇文章主要介紹了Java rmi遠(yuǎn)程方法調(diào)用基本用法解析,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-05-05SpringBoot實(shí)現(xiàn)自定義線程池的方法
這篇文章主要介紹了SpringBoot中的自定義線程池解析,實(shí)現(xiàn)自定義線程池重寫spring默認(rèn)線程池的方式使用的時(shí)候,只需要加@Async注解就可以,不用去聲明線程池類,需要的朋友可以參考下2023-11-11spring cloud gateway轉(zhuǎn)發(fā)服務(wù)報(bào)錯(cuò)的解決
這篇文章主要介紹了spring cloud gateway轉(zhuǎn)發(fā)服務(wù)報(bào)錯(cuò)的解決,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2021-09-09java之Timer和TimerTask簡單demo(分享)
下面小編就為大家?guī)硪黄猨ava之Timer和TimerTask簡單demo(分享)。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧2016-12-12