hadoop序列化實現(xiàn)案例代碼
Hadoop序列化特點
- 緊湊:高效實用存儲空間
- 快速:讀寫數(shù)據(jù)額外開銷小
- 可擴展:隨著通信協(xié)議的升級而可以升級
- 互操作:支持多種語言的交互
自定義Bean對象實現(xiàn)序列化
- 必須實現(xiàn)Writable接口
- 反序列化時,需要反射調(diào)用無參構(gòu)造函數(shù)
- 如果需要將自定義的bean放在key中傳輸,則還需要實現(xiàn)Comparable接口
案例
package com.chen.phoneproject;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class FlowBean implements Writable {
private long upFlow;
private long downFlow;
private long sumFlow;
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
public FlowBean() {
super();
}
public FlowBean(long upFlow, long downFlow) {
super();
this.upFlow = upFlow;
this.downFlow = downFlow;
}
public FlowBean(long upFlow, long downFlow, long sumFlow) {
super();
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = sumFlow;
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
this.sumFlow = dataInput.readLong();
}
@Override
public String toString() {
return "FlowBean{" +
"upFlow=" + upFlow +
", downFlow=" + downFlow +
", sumFlow=" + sumFlow +
'}';
}
}
package com.chen.phoneproject;
import lombok.extern.slf4j.Slf4j;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
@Slf4j
public class FlowCountMapper extends Mapper<LongWritable, Text,Text,FlowBean> {
Text k = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
log.info("---mapper---"+"key:"+key+",value:"+value);
String line = value.toString();
String[] fields = line.split("\t");
String phoneNum = fields[1];
long upFlow = Long.parseLong(fields[3]);
long downFlow = Long.parseLong(fields[4]);
k.set(phoneNum);
FlowBean bean = new FlowBean(upFlow,downFlow);
context.write(k,bean);
}
}package com.chen.phoneproject;
import lombok.extern.slf4j.Slf4j;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
@Slf4j
public class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean> {
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
log.info("---reduce---"+"key:"+key+",value:"+values);
long sum_upFlow = 0;
long sum_downFlow = 0;
for (FlowBean flowBean:values){
sum_upFlow += flowBean.getUpFlow();
sum_downFlow += flowBean.getDownFlow();
}
FlowBean result = new FlowBean(sum_upFlow,sum_downFlow,sum_downFlow + sum_upFlow);
context.write(key,result);
}
}package com.chen.phoneproject;
import com.chen.mapreduce.WordcountDriver;
import com.chen.mapreduce.WordcountMapper;
import com.chen.mapreduce.WordcountReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class FlowsumDriver {
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);
job.setJarByClass(FlowsumDriver.class);
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}總結(jié)
到此這篇關(guān)于hadoop序列化實現(xiàn)的文章就介紹到這了,更多相關(guān)Hadoop序列化內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
SpringBoot?使用AOP?+?Redis?防止表單重復(fù)提交的方法
Spring?Boot是一個用于構(gòu)建Web應(yīng)用程序的框架,通過AOP可以實現(xiàn)防止表單重復(fù)提交,本文介紹了在Spring?Boot應(yīng)用程序中使用AOP和Redis來防止表單重復(fù)提交的方法,需要的朋友可以參考下2023-04-04
一文帶你深入了解Java的數(shù)據(jù)結(jié)構(gòu)
Java工具包提供了強大的數(shù)據(jù)結(jié)構(gòu)。這篇文章主要為大家詳細介紹了Java數(shù)據(jù)結(jié)構(gòu)中常用的幾種接口和類,感興趣的小伙伴可以跟隨小編一起了解一下2023-05-05
通過FeignClient調(diào)用微服務(wù)提供的分頁對象IPage報錯的解決
這篇文章主要介紹了通過FeignClient調(diào)用微服務(wù)提供的分頁對象IPage報錯的解決方案,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-03-03
基于springboot設(shè)置Https請求過程解析
這篇文章主要介紹了基于springboot設(shè)置Https請求過程解析,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2020-08-08
出現(xiàn)SLF4J:?Failed?to?load?class?“org.slf4j.impl.StaticLog
本文主要介紹了出現(xiàn)SLF4J:?Failed?to?load?class?“org.slf4j.impl.StaticLoggerBinder“.的解決方法,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2022-07-07
SpringBoot+Security 發(fā)送短信驗證碼的實現(xiàn)
這篇文章主要介紹了SpringBoot+Security 發(fā)送短信驗證碼的實現(xiàn),小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2018-05-05
Dubbo+zookeeper搭配分布式服務(wù)的過程詳解
Dubbo作為分布式架構(gòu)比較后的框架,同時也是比較容易入手的框架,適合作為分布式的入手框架,下面是簡單的搭建過程,對Dubbo+zookeeper分布式服務(wù)搭建過程感興趣的朋友一起看看吧2022-04-04

