C++?OpenCV實現(xiàn)物體尺寸測量示例詳解
前言
本文將使用OpenCV C++ 進行物體尺寸測量。具體來說就是先定位到待測物體的位置,然后測量物體的寬高。
一、圖像透視矯正

原圖如圖所示。本案例的需求是測量圖片中兩張卡片的尺寸。首先,我們得定位到兩張卡片的位置。第一步,我們首先得將白色A4紙切割出來,這樣方便定位到兩張卡片所在位置。這里用到的算法是圖像透視矯正,具體可以參考OpenCV C++案例實戰(zhàn)四《圖像透視矯正》
//圖像矯正
void getWarp(Mat src, Mat &Warp)
{
Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
Mat thresh;
threshold(gray, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);
Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
Mat open;
morphologyEx(thresh, open, MORPH_OPEN, kernel);
vector<vector<Point>>contours;
findContours(open, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
vector<vector<Point>>conPoly(contours.size());
vector<Point>srcPts;
//找到最大輪廓
int MaxIndex = 0;
double Area = 0;
for (int i = 0; i < contours.size(); i++)
{
double area = contourArea(contours[i]);
if (area > Area)
{
Area = area;
MaxIndex = i;
}
}
//獲取矩形四個角點
double peri = arcLength(contours[MaxIndex], true);
approxPolyDP(contours[MaxIndex], conPoly[MaxIndex], 0.02*peri, true);
srcPts = { conPoly[MaxIndex][0],conPoly[MaxIndex][1],conPoly[MaxIndex][2],conPoly[MaxIndex][3] };
int T_L, B_L, B_R, T_R;
int width = src.cols / 2;
int height = src.rows / 2;
for (int i = 0; i < srcPts.size(); i++)
{
if (srcPts[i].x < width && srcPts[i].y < height)
{
T_L = i;
}
if (srcPts[i].x < width && srcPts[i].y > height)
{
B_L = i;
}
if (srcPts[i].x > width && srcPts[i].y > height)
{
B_R = i;
}
if (srcPts[i].x > width && srcPts[i].y < height)
{
T_R = i;
}
}
double UpWidth = EuDis(srcPts[T_L], srcPts[T_R]);
double DownWidth = EuDis(srcPts[B_L], srcPts[B_R]);
double MaxWidth = max(UpWidth, DownWidth);
double UpHeight = EuDis(srcPts[T_L], srcPts[B_L]);
double DownHeight = EuDis(srcPts[T_R], srcPts[B_R]);
double MaxHeight = max(UpHeight, DownHeight);
//透視變換進行圖像矯正
Point2f SrcAffinePts[4] = { Point2f(srcPts[T_L]),Point2f(srcPts[T_R]) ,Point2f(srcPts[B_R]) ,Point2f(srcPts[B_L]) };
Point2f DstAffinePts[4] = { Point2f(0,0),Point2f(MaxWidth,0),Point2f(MaxWidth,MaxHeight),Point2f(0,MaxHeight) };
Mat M = getPerspectiveTransform(SrcAffinePts, DstAffinePts);
warpPerspective(src, Warp, M, Point(MaxWidth, MaxHeight));
}

效果如圖所示。接下來,我們需要定位兩張卡片所在位置,尋找特征。
二、物體定位
//獲取物體坐標
void FindPts(Mat &Warp, vector<vector<Point>>&TargetPts)
{
Mat gray;
cvtColor(Warp, gray, COLOR_BGR2GRAY);
Mat thresh;
threshold(gray, thresh, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
Mat open;
morphologyEx(thresh, open, MORPH_OPEN, kernel);
vector<vector<Point>>contours;
findContours(open, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
vector<vector<Point>>conPoly(contours.size());
//定位卡片四個角點
for (int i = 0; i < contours.size(); i++)
{
double area = contourArea(contours[i]);
if (area > 1000)
{
double peri = arcLength(contours[i], true);
approxPolyDP(contours[i], conPoly[i], 0.02*peri, true);
vector<Point>temp;
temp = { conPoly[i][0],conPoly[i][1], conPoly[i][2], conPoly[i][3] };
TargetPts.push_back(temp);
}
}
}

如圖所示。通過上面代碼段,我們已經(jīng)定位出卡片的四個角點。接下來,只需根據(jù)角點位置就可以計算卡片的寬高了。
三、尺寸測量
//計算距離
void DrawAndCompute(Mat &Warp, vector<vector<Point>>&TargetPts)
{
for (int i = 0; i < TargetPts.size(); i++)
{
for (int j = 0; j < TargetPts[i].size(); j++)
{
//尺寸測量
Point PtA = Point(TargetPts[i][j]);
Point PtB = Point(TargetPts[i][(j + 1) % TargetPts[i].size()]);
double dis = round(EuDis(PtA, PtB) * 100) / 100;
//效果顯示
circle(Warp, TargetPts[i][j], 5, Scalar(0, 255, 0), -1);
line(Warp, PtA, PtB, Scalar(0, 0, 255), 2);
char text[20];
sprintf_s(text, "%.2f", dis);
Point point = Point((PtA.x + PtB.x) / 2, (PtA.y + PtB.y) / 2);
putText(Warp, text, point, FONT_HERSHEY_SIMPLEX, 1, Scalar(255, 0, 255), 2);
}
}
}
四、效果顯示

五、源碼
#include<iostream>
#include<opencv2/opencv.hpp>
using namespace std;
using namespace cv;
//歐式距離
double EuDis(Point pt1, Point pt2)
{
return sqrt((pt2.x - pt1.x)*(pt2.x - pt1.x) + (pt2.y - pt1.y)*(pt2.y - pt1.y));
}
//圖像矯正
void getWarp(Mat src, Mat &Warp)
{
Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
Mat thresh;
threshold(gray, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);
Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
Mat open;
morphologyEx(thresh, open, MORPH_OPEN, kernel);
vector<vector<Point>>contours;
findContours(open, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
vector<vector<Point>>conPoly(contours.size());
vector<Point>srcPts;
//找到最大輪廓
int MaxIndex = 0;
double Area = 0;
for (int i = 0; i < contours.size(); i++)
{
double area = contourArea(contours[i]);
if (area > Area)
{
Area = area;
MaxIndex = i;
}
}
//獲取矩形四個角點
double peri = arcLength(contours[MaxIndex], true);
approxPolyDP(contours[MaxIndex], conPoly[MaxIndex], 0.02*peri, true);
srcPts = { conPoly[MaxIndex][0],conPoly[MaxIndex][1],conPoly[MaxIndex][2],conPoly[MaxIndex][3] };
int T_L, B_L, B_R, T_R;
int width = src.cols / 2;
int height = src.rows / 2;
for (int i = 0; i < srcPts.size(); i++)
{
if (srcPts[i].x < width && srcPts[i].y < height)
{
T_L = i;
}
if (srcPts[i].x < width && srcPts[i].y > height)
{
B_L = i;
}
if (srcPts[i].x > width && srcPts[i].y > height)
{
B_R = i;
}
if (srcPts[i].x > width && srcPts[i].y < height)
{
T_R = i;
}
}
double UpWidth = EuDis(srcPts[T_L], srcPts[T_R]);
double DownWidth = EuDis(srcPts[B_L], srcPts[B_R]);
double MaxWidth = max(UpWidth, DownWidth);
double UpHeight = EuDis(srcPts[T_L], srcPts[B_L]);
double DownHeight = EuDis(srcPts[T_R], srcPts[B_R]);
double MaxHeight = max(UpHeight, DownHeight);
//透視變換進行圖像矯正
Point2f SrcAffinePts[4] = { Point2f(srcPts[T_L]),Point2f(srcPts[T_R]) ,Point2f(srcPts[B_R]) ,Point2f(srcPts[B_L]) };
Point2f DstAffinePts[4] = { Point2f(0,0),Point2f(MaxWidth,0),Point2f(MaxWidth,MaxHeight),Point2f(0,MaxHeight) };
Mat M = getPerspectiveTransform(SrcAffinePts, DstAffinePts);
warpPerspective(src, Warp, M, Point(MaxWidth, MaxHeight));
}
//獲取物體坐標
void FindPts(Mat &Warp, vector<vector<Point>>&TargetPts)
{
Mat gray;
cvtColor(Warp, gray, COLOR_BGR2GRAY);
Mat thresh;
threshold(gray, thresh, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
Mat open;
morphologyEx(thresh, open, MORPH_OPEN, kernel);
vector<vector<Point>>contours;
findContours(open, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
vector<vector<Point>>conPoly(contours.size());
//定位卡片四個角點
for (int i = 0; i < contours.size(); i++)
{
double area = contourArea(contours[i]);
if (area > 1000)
{
double peri = arcLength(contours[i], true);
approxPolyDP(contours[i], conPoly[i], 0.02*peri, true);
vector<Point>temp;
temp = { conPoly[i][0],conPoly[i][1], conPoly[i][2], conPoly[i][3] };
TargetPts.push_back(temp);
}
}
}
//計算距離
void DrawAndCompute(Mat &Warp, vector<vector<Point>>&TargetPts)
{
for (int i = 0; i < TargetPts.size(); i++)
{
for (int j = 0; j < TargetPts[i].size(); j++)
{
//尺寸測量
Point PtA = Point(TargetPts[i][j]);
Point PtB = Point(TargetPts[i][(j + 1) % TargetPts[i].size()]);
double dis = round(EuDis(PtA, PtB) * 100) / 100;
//效果顯示
circle(Warp, TargetPts[i][j], 5, Scalar(0, 255, 0), -1);
line(Warp, PtA, PtB, Scalar(0, 0, 255), 2);
char text[20];
sprintf_s(text, "%.2f", dis);
Point point = Point((PtA.x + PtB.x) / 2, (PtA.y + PtB.y) / 2);
putText(Warp, text, point, FONT_HERSHEY_SIMPLEX, 1, Scalar(255, 0, 255), 2);
}
}
}
int main()
{
Mat src = imread("src.jpg");
if (src.empty())
{
cout << "No Image!" << endl;
system("pause");
return -1;
}
Mat Warp;
getWarp(src, Warp);
vector<vector<Point>>TargetPts;
FindPts(Warp, TargetPts);
DrawAndCompute(Warp, TargetPts);
imshow("Warp", Warp);
waitKey(0);
destroyAllWindows();
system("pause");
return 0;
}
總結
本文使用OpenCV C++ 進行物體尺寸測量,關鍵步驟有以下幾點。
1、圖像透視矯正。方便定位物體所在位置。
2、物體定位。定位所需物體位置,獲取特征。
3、根據(jù)已知特征進行計算。
以上就是C++ OpenCV實現(xiàn)物體尺寸測量示例詳解的詳細內(nèi)容,更多關于C++ OpenCV物體尺寸測量的資料請關注腳本之家其它相關文章!
相關文章
c++11之std::async 和std::thread的區(qū)別小結
std::async和std::thread都是C++11中提供的線程庫,它們都可以用于創(chuàng)建新線程,本文主要介紹了c++11之std::async 和std::thread的區(qū)別小結,感興趣的可以了解一下2024-02-02
C++ 中使用lambda代替 unique_ptr 的Deleter的方法
這篇文章主要介紹了C++ 中使用lambda代替 unique_ptr 的Deleter的方法,需要的朋友可以參考下2017-04-04
C++中Overload,Override,Hide之間的區(qū)別
重載overload,這個概念是大家熟知的。在同一可訪問區(qū)內(nèi)被聲名的幾個具有不同參數(shù)列的(參數(shù)的類型、個數(shù)、順序不同)同名函數(shù),程序會根據(jù)不同的參數(shù)列來確定具體調(diào)用哪個函數(shù),這種機制就是重載2013-09-09
C++中調(diào)用復制(拷貝)函數(shù)的三種情況總結
這篇文章主要介紹了C++中調(diào)用復制(拷貝)函數(shù)的三種情況總結,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-11-11
C語言中函數(shù)棧幀的創(chuàng)建和銷毀的深層分析
在C語言中,每一個正在運行的函數(shù)都有一個棧幀與其對應,棧幀中存儲的是該函數(shù)的返回地址和局部變量。從邏輯上講,棧幀就是一個函數(shù)執(zhí)行的環(huán)境:函數(shù)參數(shù)、函數(shù)的局部變量、函數(shù)執(zhí)行完后返回到哪里等等2022-04-04

