詳解Java數(shù)據(jù)結(jié)構(gòu)之平衡二叉樹
什么是二叉搜索樹
簡單來說,就是方便搜索的二叉樹,是一種具備特定結(jié)構(gòu)的二叉樹,即,對于節(jié)點(diǎn)n,其左子樹的所有節(jié)點(diǎn)的值都小于等于其值,其右子樹的所有節(jié)點(diǎn)的值都大于等于其值。?
以序列2,4,1,3,5,10,9,8為例,如果以二叉搜索樹建樹的方式,我們建立出來的逐個步驟應(yīng)該為
第一步:
第二步:
第三步:
第四步:
第五步:
第六步:
第七步:
第八步:
按照不平衡的普通方法生成的二叉搜索樹就是這么一個樣子。其實(shí)現(xiàn)代碼如下:
package com.chaojilaji.book.searchtree; import com.chaojilaji.auto.autocode.utils.Json; import java.util.Objects; public class SearchTreeUtils { ? ? public static SearchTree buildTree(SearchTree searchTree, Integer value) { ? ? ? ? if (value >= searchTree.getValue()) { ? ? ? ? ? ? if (Objects.isNull(searchTree.getRightChild())) { ? ? ? ? ? ? ? ? SearchTree searchTree1 = new SearchTree(); ? ? ? ? ? ? ? ? searchTree1.setValue(value); ? ? ? ? ? ? ? ? searchTree.setRightChild(searchTree1); ? ? ? ? ? ? } else { ? ? ? ? ? ? ? ? buildTree(searchTree.getRightChild(), value); ? ? ? ? ? ? } ? ? ? ? } else { ? ? ? ? ? ? if (Objects.isNull(searchTree.getLeftChild())) { ? ? ? ? ? ? ? ? SearchTree searchTree1 = new SearchTree(); ? ? ? ? ? ? ? ? searchTree1.setValue(value); ? ? ? ? ? ? ? ? searchTree.setLeftChild(searchTree1); ? ? ? ? ? ? } else { ? ? ? ? ? ? ? ? buildTree(searchTree.getLeftChild(), value); ? ? ? ? ? ? } ? ? ? ? } ? ? ? ? return searchTree; ? ? } ? ? public static void main(String[] args) { ? ? ? ? int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8}; ? ? ? ? SearchTree searchTree = new SearchTree(); ? ? ? ? searchTree.setValue(a[0]); ? ? ? ? for (int i = 1; i < a.length; i++) { ? ? ? ? ? ? searchTree = buildTree(searchTree,a[i]); ? ? ? ? } ? ? ? ? System.out.println(Json.toJson(searchTree)); ? ? } }
運(yùn)行的結(jié)果如下:
{ "value": 2, "left_child": { "value": 1, "left_child": null, "right_child": null }, "right_child": { "value": 4, "left_child": { "value": 3, "left_child": null, "right_child": null }, "right_child": { "value": 5, "left_child": null, "right_child": { "value": 10, "left_child": { "value": 9, "left_child": { "value": 8, "left_child": null, "right_child": null }, "right_child": null }, "right_child": null } } } }
與我們的目標(biāo)結(jié)果是一致的。
好了,那我們本節(jié)就完畢了??墒寝D(zhuǎn)過頭可能你也發(fā)現(xiàn)了,直接生成的這個二叉搜索樹似乎有點(diǎn)太長了,層數(shù)有點(diǎn)太多了,一般來說,一個長度為8的序列,四層結(jié)構(gòu)的二叉樹就可以表現(xiàn)出來了,這里卻使用了六層,顯然這樣的結(jié)果不盡人意,同時太深的層數(shù),也增加了查找的時間復(fù)雜度。
這就給我們的樹提了要求,我們需要將目前構(gòu)造出來的樹平衡一下,讓這棵二叉搜索樹的左右子樹“重量”最好差不多。
平衡二叉搜索樹
首先需要掌握兩個概念
- 平衡因子
- 旋轉(zhuǎn)
平衡因子就是對于這棵二叉搜索樹的每個節(jié)點(diǎn)來說,其左子樹的高度減去右子樹的高度即為該節(jié)點(diǎn)的平衡因子,該數(shù)值能很快的辨別出該節(jié)點(diǎn)究竟是左子樹高還是右子樹高。在平衡二叉樹中規(guī)定,當(dāng)一個節(jié)點(diǎn)的平衡因子的絕對值大于等于2的時候,我們就認(rèn)為該節(jié)點(diǎn)不平衡,需要進(jìn)行調(diào)整。那么這種調(diào)整的手段稱之為節(jié)點(diǎn)與節(jié)點(diǎn)的旋轉(zhuǎn),通俗來說,旋轉(zhuǎn)就是指的節(jié)點(diǎn)間的指向關(guān)系發(fā)生變化,在c語言中就是指針指向的切換。
在調(diào)用旋轉(zhuǎn)之前,我們需要判斷整棵樹是否平衡,即,這棵二叉搜索樹的所有平衡因子是否有絕對值大于等于2的,如果有,就找出最小的一棵子樹??梢源_定的是,如果前一次二叉搜索樹是平衡的,那么此時如果加一個節(jié)點(diǎn)進(jìn)去,造成不平衡,那么節(jié)點(diǎn)從葉子開始回溯,找到的第一個大于等于2的節(jié)點(diǎn)勢必為最小不平衡子樹的根節(jié)點(diǎn)。
對于這棵最小不平衡的子樹,我們需要得到兩個值,即根節(jié)點(diǎn)的平衡因子a,以及左右子樹根節(jié)點(diǎn)中平衡因子絕對值較大者的平衡因子b。
我們可以將需要旋轉(zhuǎn)的類型抽象為以下四種:?
1.左左型(正正型,即 a>0 && b>0)
左左型最后想要達(dá)到的目標(biāo)是第二個節(jié)點(diǎn)成為根節(jié)點(diǎn),第一個節(jié)點(diǎn)成為第二個節(jié)點(diǎn)的右節(jié)點(diǎn)。
所以用偽代碼展示就是(設(shè)a1,a2,a3分別為圖里面從上到下的三個節(jié)點(diǎn))
a2的右子樹 = (合并(a2的右子樹,a1的右子樹) + a1頂點(diǎn)值) 一起構(gòu)成的二叉搜索樹;
返回 a2
2.左右型(正負(fù)型,即 a>0 && b<0)
設(shè)a1,a2,a3分別為圖里面從上到下的三個節(jié)點(diǎn)
首先應(yīng)該通過將a3和a2調(diào)換上下位置,使之變成左左型,然后再調(diào)用左左型的方法就完成了。
從左右型調(diào)換成左左型,即將a2及其左子樹成為a3左子樹的一部分,然后將a1的左子樹置為a3即可。
偽代碼如下:
a3的左子樹 = a2及其左子樹與a3的左子樹合并成的一棵二叉搜索樹;
a1的左子樹 = a3;
3.右右型(負(fù)負(fù)型,即 a<0 && b<0)
設(shè)a1,a2,a3分別為圖里面從上到下的三個節(jié)點(diǎn)
右右型與左左型類似,要達(dá)到的目的就是a1成為a2左子樹的一部分,偽代碼為:
a2的左子樹 = (合并a2的左子樹和a1的左子樹)+ a1頂點(diǎn)的值構(gòu)成的二叉搜索樹;
返回a2
4.右左型(負(fù)正型,即 a<0 && b>0)
設(shè)a1,a2,a3分別為圖里面從上到下的三個節(jié)點(diǎn)
右左型需要先轉(zhuǎn)換成右右型,然后在調(diào)用右右型的方法即可。
從右左型到右右型,即需要將a2及其右子樹成為a3右子樹的一部分,然后將a1的右子樹置為a3即可。
偽代碼如下:
a3的右子樹 = a2及其右子樹與a3的右子樹合并成的一棵二叉搜索樹;
a1的右子樹 = a3;
從上面的分析可以得出,我們不僅僅需要實(shí)現(xiàn)旋轉(zhuǎn)的方法,還需要實(shí)現(xiàn)合并二叉樹等方法,這些方法都是基礎(chǔ)方法,讀者需要確保會快速寫出來。
請讀者朋友們根據(jù)上面的內(nèi)容,先嘗試寫出集中平衡化的方法。
平衡二叉搜索樹建樹程序
平衡二叉搜索樹建樹,需要在二叉搜索樹建樹的基礎(chǔ)上加上平衡的過程,即子樹之間指針轉(zhuǎn)換的問題,同時,由于這種指針轉(zhuǎn)換引起的子樹的子樹也會產(chǎn)生不平衡,所以上面提到的四種旋轉(zhuǎn)調(diào)整方式都是遞歸的。
首先,先構(gòu)建節(jié)點(diǎn)基礎(chǔ)結(jié)構(gòu):
public class SearchTree { ? ? private Integer value; ? ? private SearchTree leftChild; ? ? private SearchTree rightChild; ? ? private Integer balanceNumber = 0; ? ? private Integer height = 0; }
值,高度,平衡因子,左子樹,右子樹
計算每個節(jié)點(diǎn)的高度
這是計算二叉搜索樹中每個平衡因子的基礎(chǔ),我們設(shè)最低層為高度1,則計算節(jié)點(diǎn)高度的代碼為:
public static Integer countHeight(SearchTree searchTree) { if (Objects.isNull(searchTree)) { return 0; } searchTree.setHeight(Math.max(countHeight(searchTree.getLeftChild()), countHeight(searchTree.getRightChild())) + 1); return searchTree.getHeight(); }
這里有個半動態(tài)規(guī)劃的結(jié)論:當(dāng)前節(jié)點(diǎn)的高度,等于左右子樹的最大高度+1;這里的寫法有點(diǎn)樹形DP的味道。
計算每個節(jié)點(diǎn)的平衡因子
public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) { ? ? if (Objects.nonNull(searchTree.getValue())) { ? ? ? ? if (Objects.isNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.nonNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight()); ? ? ? ? } ? ? ? ? if (Objects.nonNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.isNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()); ? ? ? ? } ? ? ? ? if (Objects.isNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.isNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(0); ? ? ? ? } ? ? ? ? if (Objects.nonNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.nonNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - searchTree.getRightChild().getHeight()); ? ? ? ? } ? ? } ? ? if (Objects.nonNull(searchTree.getLeftChild())) { ? ? ? ? countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1); ? ? } ? ? if (Objects.nonNull(searchTree.getRightChild())) { ? ? ? ? countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2); ? ? } }
本質(zhì)上講,平衡因子就是左子樹高度減去右子樹高度,注意這里左右子樹都有可能不存在,所以加入了一堆特判。
判斷當(dāng)前二叉樹是否平衡
static class MaxNumber { ? ? public Integer max; ? ? public SearchTree childTree; ? ? public SearchTree fatherTree; ? ? public Integer flag = 0; // 0 代表自己就是根,1代表childTree是左子樹,2代表childTree是右子樹 } public static MaxNumber checkBalance(SearchTree searchTree) { ? ? MaxNumber max = new MaxNumber(); ? ? max.max = 0; ? ? countBalanceNumber(searchTree, max, null, 0); ? ? return max; } public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) { ? ? if (Objects.nonNull(searchTree.getValue())) { ? ? ? ? if (Objects.isNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.nonNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight()); ? ? ? ? } ? ? ? ? if (Objects.nonNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.isNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()); ? ? ? ? } ? ? ? ? if (Objects.isNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.isNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(0); ? ? ? ? } ? ? ? ? if (Objects.nonNull(searchTree.getLeftChild())? ? ? ? ? ? ? && Objects.nonNull(searchTree.getRightChild())) { ? ? ? ? ? ? searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - searchTree.getRightChild().getHeight()); ? ? ? ? } ? ? } ? ? if (Objects.nonNull(searchTree.getLeftChild())) { ? ? ? ? countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1); ? ? } ? ? if (Objects.nonNull(searchTree.getRightChild())) { ? ? ? ? countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2); ? ? } ? ? if (Math.abs(searchTree.getBalanceNumber()) >= Math.abs(max.max)) { ? ? ? ? if (Math.abs(searchTree.getBalanceNumber()) == Math.abs(max.max)? ? ? ? ? ? ? && max.childTree == null) { ? ? ? ? ? ? max.childTree = searchTree; ? ? ? ? ? ? max.fatherTree = fatherTree; ? ? ? ? ? ? max.flag = type; ? ? ? ? ? ? max.max = searchTree.getBalanceNumber(); ? ? ? ? } ? ? ? ? if (Math.abs(searchTree.getBalanceNumber()) > Math.abs(max.max)) { ? ? ? ? ? ? max.childTree = searchTree; ? ? ? ? ? ? max.fatherTree = fatherTree; ? ? ? ? ? ? max.flag = type; ? ? ? ? ? ? max.max = searchTree.getBalanceNumber(); ? ? ? ? } ? ? } }
其中,MaxNumber類是為了保存第一棵不平衡的子樹而存在的結(jié)構(gòu),為了使這棵子樹平衡之后能重新回到整棵樹中,需要在MaxNumber中存儲當(dāng)前子樹父節(jié)點(diǎn),同時標(biāo)明當(dāng)前子樹是父節(jié)點(diǎn)的左子樹還是右子樹,還是本身。
合并二叉樹
public static void getAllValue(SearchTree tree, Set<Integer> sets) { ? ? if (Objects.isNull(tree)) return; ? ? if (Objects.nonNull(tree.getValue())) { ? ? ? ? sets.add(tree.getValue()); ? ? } ? ? if (Objects.nonNull(tree.getLeftChild())) { ? ? ? ? getAllValue(tree.getLeftChild(), sets); ? ? } ? ? if (Objects.nonNull(tree.getRightChild())) { ? ? ? ? getAllValue(tree.getRightChild(), sets); ? ? } } /** ? ? ?* 合并兩棵二叉搜索樹 ? ? ?* ? ? ?* @param a ? ? ?* @param b ? ? ?* @return ? ? ?*/ public static SearchTree mergeTree(SearchTree a, SearchTree b) { ? ? Set<Integer> vals = new HashSet<>(); ? ? getAllValue(b, vals); ? ? for (Integer c : vals) { ? ? ? ? a = buildTree(a, c); ? ? } ? ? return a; }
將一棵樹轉(zhuǎn)成數(shù)字集合,然后通過建樹的方式建到另外一棵樹上即可。
旋轉(zhuǎn)調(diào)整函數(shù)
1.左左型旋轉(zhuǎn) /** * 左左 * * @param searchTree * @return */ public static SearchTree leftRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newRight = mergeTree(father.getRightChild(), searchTree.getRightChild()); newRight = buildTree(newRight, b.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); } searchTree.setRightChild(newRight); return searchTree; }
2.右右型旋轉(zhuǎn)
/** * 右右 * @param father * @param searchTree * @return */ public static SearchTree rightRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newLeft = mergeTree(father.getLeftChild(), searchTree.getLeftChild()); newLeft = buildTree(newLeft, b.getValue()); countHeight(newLeft); while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); } searchTree.setLeftChild(newLeft); return searchTree; }
3.左右型旋轉(zhuǎn)
/** * 左右 * * @param searchTree * @return */ public static SearchTree rightRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getRightChild(); SearchTree newLeft = mergeTree(a2.getLeftChild(), a3.getLeftChild()); newLeft = buildTree(newLeft, a2.getValue()); countHeight(newLeft); while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); } a3.setLeftChild(newLeft); a1.setLeftChild(a3); return a1; }
4.右左型旋轉(zhuǎn)
/** * 右左 * * @param searchTree * @return */ public static SearchTree leftRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getLeftChild(); SearchTree newRight = mergeTree(a2.getRightChild(), a3.getRightChild()); newRight = buildTree(newRight, a2.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); } a3.setRightChild(newRight); a1.setRightChild(a3); return a1; }
旋轉(zhuǎn)調(diào)用函數(shù):
public static SearchTree rotate(SearchTree searchTree) { int a = searchTree.getBalanceNumber(); if (Math.abs(a) < 2) { return searchTree; } int b = Objects.isNull(searchTree.getLeftChild()) ? 0 : searchTree.getLeftChild().getBalanceNumber(); int c = Objects.isNull(searchTree.getRightChild()) ? 0 : searchTree.getRightChild().getBalanceNumber(); if (a > 0) { if (b > 0) { // TODO: 2022/1/13 左左 searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } else { // TODO: 2022/1/13 左右 searchTree = rightRotate2(searchTree, searchTree.getLeftChild()); searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } } else { if (c > 0) { // TODO: 2022/1/13 右左 searchTree = leftRotate2(searchTree, searchTree.getRightChild()); searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } else { // TODO: 2022/1/13 右右 searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } } return searchTree; }
整體代碼
package com.chaojilaji.book.searchtree; import com.chaojilaji.auto.autocode.utils.Json; import com.chaojilaji.book.tree.Handle; import com.chaojilaji.book.tree.Tree; import org.omg.CORBA.OBJ_ADAPTER; import java.util.HashSet; import java.util.Objects; import java.util.Set; public class SearchTreeUtils { static class MaxNumber { public Integer max; public SearchTree childTree; public SearchTree fatherTree; public Integer flag = 0; // 0 代表自己就是根,1代表childTree是左子樹,2代表childTree是右子樹 } public static SearchTree rotate(SearchTree searchTree) { int a = searchTree.getBalanceNumber(); if (Math.abs(a) < 2) { return searchTree; } int b = Objects.isNull(searchTree.getLeftChild()) ? 0 : searchTree.getLeftChild().getBalanceNumber(); int c = Objects.isNull(searchTree.getRightChild()) ? 0 : searchTree.getRightChild().getBalanceNumber(); if (a > 0) { if (b > 0) { // TODO: 2022/1/13 左左 searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } else { // TODO: 2022/1/13 左右 searchTree = rightRotate2(searchTree, searchTree.getLeftChild()); searchTree = leftRotate1(searchTree, searchTree.getLeftChild()); } } else { if (c > 0) { // TODO: 2022/1/13 右左 searchTree = leftRotate2(searchTree, searchTree.getRightChild()); searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } else { // TODO: 2022/1/13 右右 searchTree = rightRotate1(searchTree, searchTree.getRightChild()); } } return searchTree; } public static void getAllValue(SearchTree tree, Set<Integer> sets) { if (Objects.isNull(tree)) return; if (Objects.nonNull(tree.getValue())) { sets.add(tree.getValue()); } if (Objects.nonNull(tree.getLeftChild())) { getAllValue(tree.getLeftChild(), sets); } if (Objects.nonNull(tree.getRightChild())) { getAllValue(tree.getRightChild(), sets); } } /** * 合并兩棵二叉搜索樹 * * @param a * @param b * @return */ public static SearchTree mergeTree(SearchTree a, SearchTree b) { Set<Integer> vals = new HashSet<>(); getAllValue(b, vals); for (Integer c : vals) { a = buildTree(a, c); } return a; } /** * 左左 * * @param searchTree * @return */ public static SearchTree leftRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newRight = mergeTree(father.getRightChild(), searchTree.getRightChild()); newRight = buildTree(newRight, b.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); } searchTree.setRightChild(newRight); return searchTree; } /** * 右左 * * @param searchTree * @return */ public static SearchTree leftRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getLeftChild(); SearchTree newRight = mergeTree(a2.getRightChild(), a3.getRightChild()); newRight = buildTree(newRight, a2.getValue()); countHeight(newRight); while (Math.abs(checkBalance(newRight).childTree.getBalanceNumber()) >= 2) { newRight = rotate(checkBalance(newRight).childTree); countHeight(newRight); // System.out.println(Json.toJson(newRight)); } a3.setRightChild(newRight); a1.setRightChild(a3); return a1; } /** * 右右 * @param father * @param searchTree * @return */ public static SearchTree rightRotate1(SearchTree father, SearchTree searchTree) { SearchTree b = father; SearchTree newLeft = mergeTree(father.getLeftChild(), searchTree.getLeftChild()); newLeft = buildTree(newLeft, b.getValue()); countHeight(newLeft); // TODO: 2022/1/13 合并后的也有可能有問題 while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); // System.out.println(Json.toJson(newLeft)); } searchTree.setLeftChild(newLeft); return searchTree; } /** * 左右 * * @param searchTree * @return */ public static SearchTree rightRotate2(SearchTree father, SearchTree searchTree) { SearchTree a1 = father; SearchTree a2 = searchTree; SearchTree a3 = searchTree.getRightChild(); SearchTree newLeft = mergeTree(a2.getLeftChild(), a3.getLeftChild()); newLeft = buildTree(newLeft, a2.getValue()); countHeight(newLeft); while (Math.abs(checkBalance(newLeft).childTree.getBalanceNumber()) >= 2) { newLeft = rotate(checkBalance(newLeft).childTree); countHeight(newLeft); } a3.setLeftChild(newLeft); a1.setLeftChild(a3); return a1; } public static MaxNumber checkBalance(SearchTree searchTree) { MaxNumber max = new MaxNumber(); max.max = 0; countBalanceNumber(searchTree, max, null, 0); return max; } public static Integer countHeight(SearchTree searchTree) { if (Objects.isNull(searchTree)) { return 0; } searchTree.setHeight(Math.max(countHeight(searchTree.getLeftChild()), countHeight(searchTree.getRightChild())) + 1); return searchTree.getHeight(); } public static void countBalanceNumber(SearchTree searchTree, MaxNumber max, SearchTree fatherTree, Integer type) { if (Objects.nonNull(searchTree.getValue())) { if (Objects.isNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(-searchTree.getRightChild().getHeight()); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight()); } if (Objects.isNull(searchTree.getLeftChild()) && Objects.isNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(0); } if (Objects.nonNull(searchTree.getLeftChild()) && Objects.nonNull(searchTree.getRightChild())) { searchTree.setBalanceNumber(searchTree.getLeftChild().getHeight() - searchTree.getRightChild().getHeight()); } } if (Objects.nonNull(searchTree.getLeftChild())) { countBalanceNumber(searchTree.getLeftChild(), max, searchTree, 1); } if (Objects.nonNull(searchTree.getRightChild())) { countBalanceNumber(searchTree.getRightChild(), max, searchTree, 2); } if (Math.abs(searchTree.getBalanceNumber()) >= Math.abs(max.max)) { if (Math.abs(searchTree.getBalanceNumber()) == Math.abs(max.max) && max.childTree == null) { max.childTree = searchTree; max.fatherTree = fatherTree; max.flag = type; max.max = searchTree.getBalanceNumber(); } if (Math.abs(searchTree.getBalanceNumber()) > Math.abs(max.max)) { max.childTree = searchTree; max.fatherTree = fatherTree; max.flag = type; max.max = searchTree.getBalanceNumber(); } } } public static SearchTree buildTree(SearchTree searchTree, Integer value) { if (Objects.isNull(searchTree)) { searchTree = new SearchTree(); } if (Objects.isNull(searchTree.getValue())) { searchTree.setValue(value); return searchTree; } if (value >= searchTree.getValue()) { if (Objects.isNull(searchTree.getRightChild())) { SearchTree searchTree1 = new SearchTree(); searchTree1.setValue(value); searchTree.setRightChild(searchTree1); } else { buildTree(searchTree.getRightChild(), value); } } else { if (Objects.isNull(searchTree.getLeftChild())) { SearchTree searchTree1 = new SearchTree(); searchTree1.setValue(value); searchTree.setLeftChild(searchTree1); } else { buildTree(searchTree.getLeftChild(), value); } } return searchTree; } public static void main(String[] args) { // int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8}; int[] a = new int[]{2, 4, 1, 3, 5, 10, 9, 8, 6, 7}; SearchTree searchTree = new SearchTree(); for (int i = 0; i < a.length; i++) { searchTree = buildTree(searchTree, a[i]); countHeight(searchTree); MaxNumber maxNumber = checkBalance(searchTree); SearchTree searchTree1 = maxNumber.childTree; if (Math.abs(searchTree1.getBalanceNumber()) >= 2) { searchTree1 = rotate(searchTree1); if (maxNumber.flag == 0) { maxNumber.fatherTree = searchTree1; searchTree = searchTree1; } else if (maxNumber.flag == 1) { maxNumber.fatherTree.setLeftChild(searchTree1); } else if (maxNumber.flag == 2) { maxNumber.fatherTree.setRightChild(searchTree1); } countHeight(searchTree); } } System.out.println("最終為\n" + Json.toJson(searchTree)); } }
以序列2, 4, 1, 3, 5, 10, 9, 8, 6, 7為例,構(gòu)造的平衡二叉搜索樹結(jié)構(gòu)為
{ "value": 4, "left_child": { "value": 2, "left_child": { "value": 1, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "right_child": { "value": 3, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "balance_number": 0, "height": 2 }, "right_child": { "value": 8, "left_child": { "value": 6, "left_child": { "value": 5, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "right_child": { "value": 7, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "balance_number": 0, "height": 2 }, "right_child": { "value": 10, "left_child": { "value": 9, "left_child": null, "right_child": null, "balance_number": 0, "height": 1 }, "right_child": null, "balance_number": 1, "height": 2 }, "balance_number": 0, "height": 3 }, "balance_number": -1, "height": 4 }
以上就是詳解Java數(shù)據(jù)結(jié)構(gòu)之平衡二叉樹的詳細(xì)內(nèi)容,更多關(guān)于Java平衡二叉樹的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Java中的CopyOnWriteArrayList容器解析
這篇文章主要介紹了Java中的CopyOnWriteArrayList容器解析,CopyOnWriteArrayList容器允許并發(fā)讀,讀操作是無鎖的,性能較高。至于寫操作,比如向容器中添加一個元素,則首先將當(dāng)前容器復(fù)制一份,然后在新副本上執(zhí)行寫操作,需要的朋友可以參考下2023-12-12Java?實(shí)現(xiàn)使用Comparable按照我們指定的規(guī)則排序
這篇文章主要介紹了Java?如何使用Comparable按照我們指定的規(guī)則排序,通過練習(xí)創(chuàng)建TreeSet集合使用無參構(gòu)造方法,并按照年齡從小到大的順序排序,若年齡相同再按照姓名的字母順序排序展開內(nèi)容,需要的朋友可以參考一下2022-04-04Vue中computed計算屬性和data數(shù)據(jù)獲取方式
這篇文章主要介紹了Vue中computed計算屬性和data數(shù)據(jù)獲取方式,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2022-03-03JVM實(shí)戰(zhàn)系列之CPU100%和內(nèi)存100%排查
本文主要介紹了JVM實(shí)戰(zhàn)系列之CPU100%和內(nèi)存100%排查,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-06-06win10 java(jdk安裝)環(huán)境變量配置和相關(guān)問題
這篇文章主要介紹了win10java(jdk安裝)環(huán)境變量配置和相關(guān)問題解決,非常不錯,具有一定的參考借鑒價值,需要的朋友可以參考下2019-12-12