欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

matlab遺傳算法求解車間調(diào)度問題分析及實現(xiàn)源碼

 更新時間:2022年02月07日 12:50:47   作者:紫極神光  
這篇文章主要為大家介紹了matlab遺傳算法求解車間調(diào)度問題解析,文中附含詳細(xì)實現(xiàn)源碼,有需要的朋友可以借鑒參考下,希望能夠有所幫助

一、車間調(diào)度簡介

1 車間調(diào)度定義

車間調(diào)度是指根據(jù)產(chǎn)品制造的合理需求分配加工車間順序,從而達到合理利用產(chǎn)品制造資源、提高企業(yè)經(jīng)濟效益的目的。車間調(diào)度問題從數(shù)學(xué)上可以描述為有n個待加工的零件要在m臺機器上加工。問題需要滿足的條件包括每個零件的各道工序使用每臺機器不多于1次,每個零件都按照一定的順序進行加工。

2 傳統(tǒng)作業(yè)車間調(diào)度

傳統(tǒng)作業(yè)車間帶調(diào)度實例

在這里插入圖片描述

有若干工件,每個工件有若干工序,有多個加工機器,但是每道工序只能在一臺機器上加工。對應(yīng)到上面表格中的實例就是,兩個工件,工件J1有三道工序,工序Q11只能在M3上加工,加工時間是5小時。
約束是對于一個工件來說,工序的相對順序不能變。O11->O12->O13。每時刻,每個工件只能在一臺機器上加工;每個機器上只能有一個工件。
調(diào)度的任務(wù)則是安排出工序的加工順序,加工順序確定了,因為每道工序只有一臺機器可用,加工的機器也就確定了。
調(diào)度的目的是總的完工時間最短(也可以是其他目標(biāo))。舉個例子,比如確定了O21->O22->O11->O23->O12->O13的加工順序之后,我們就可以根據(jù)加工機器的約束,計算出總的加工時間。
M2加工O21消耗6小時,工件J2當(dāng)前加工時間6小時。
M1加工O22消耗9小時,工件J2當(dāng)前加工時間6+9=15小時。
M3加工O11消耗5小時,工件J1當(dāng)前加工時間5小時。
M4加工O23消耗7小時,工件J2加工時間15+7=22小時。
M1加工O12消耗11小時,但是要等M1加工完O22之后才開始加工O12,所以工件J1的當(dāng)前加工時間為max(5,9)+11=20小時。
M5加工O13消耗8小時,工件J2加工時間20+8=28小時。
總的完工時間就是max(22,28)=28小時。

2 柔性作業(yè)車間調(diào)度

柔性作業(yè)車間帶調(diào)度實例(參考自高亮老師論文
《改進遺傳算法求解柔性作業(yè)車間調(diào)度問題》——機械工程學(xué)報)
在這里插入圖片描述
相比于傳統(tǒng)作業(yè)車間調(diào)度,柔性作業(yè)車間調(diào)度放寬了對加工機器的約束,更符合現(xiàn)實生產(chǎn)情況,每個工序可選加工機器變成了多個,可以由多個加工機器中的一個加工。比如上表中的實例,J1的O12工序可以選擇M2和M4加工,加工時間分別是8小時和4小時,但是并不一定選擇M4加工,最后得出來的總的完工時間就更短,所以,需要調(diào)度算法求解優(yōu)化。

相比于傳統(tǒng)作業(yè)車間,柔性車間作業(yè)調(diào)度的調(diào)度任務(wù)不僅要確定工序的加工順序,而且需要確定每道工序的機器分配。比如,確定了O21->O22->O11->O23->O12->O13的加工順序,我們并不能相應(yīng)工序的加工機器,所以還應(yīng)該確定對應(yīng)的[M1、M3、M5]->[M1、M2、M3]->[M1、M2、M3、M4、M5]->[M2、M3、M4、M5]->[M2、M4]->[M1、M3、M4、M5]的機器組合。調(diào)度的目的還是總的完工時間最短(也可以是其他目標(biāo),比如機器最大負(fù)荷最短、總的機器負(fù)荷最短)

二、遺傳算法簡介

1 遺傳算法概述

遺傳算法(Genetic Algorithm,GA)是進化計算的一部分,是模擬達爾文的遺傳選擇和自然淘汰的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優(yōu)解的方法。該算法簡單、通用,魯棒性強,適于并行處理。

2 遺傳算法的特點和應(yīng)用

遺傳算法是一類可用于復(fù)雜系統(tǒng)優(yōu)化的具有魯棒性的搜索算法,與傳統(tǒng)的優(yōu)化算法相比,具有以下特點:

(1)以決策變量的編碼作為運算對象。傳統(tǒng)的優(yōu)化算法往往直接利用決策變量的實際值本身來進行優(yōu)化計算,但遺傳算法是使用決策變量的某種形式的編碼作為運算對象。這種對決策變量的編碼處理方式,使得我們在優(yōu)化計算中可借鑒生物學(xué)中染色體和基因等概念,可以模仿自然界中生物的遺傳和進化激勵,也可以很方便地應(yīng)用遺傳操作算子。

(2)直接以適應(yīng)度作為搜索信息。傳統(tǒng)的優(yōu)化算法不僅需要利用目標(biāo)函數(shù)值,而且搜索過程往往受目標(biāo)函數(shù)的連續(xù)性約束,有可能還需要滿足“目標(biāo)函數(shù)的導(dǎo)數(shù)必須存在”的要求以確定搜索方向。遺傳算法僅使用由目標(biāo)函數(shù)值變換來的適應(yīng)度函數(shù)值就可確定進一步的搜索范圍,無需目標(biāo)函數(shù)的導(dǎo)數(shù)值等其他輔助信息。直接利用目標(biāo)函數(shù)值或個體適應(yīng)度值也可以將搜索范圍集中到適應(yīng)度較高部分的搜索空間中,從而提高搜索效率。

(3)使用多個點的搜索信息,具有隱含并行性。傳統(tǒng)的優(yōu)化算法往往是從解空間的一個初始點開始最優(yōu)解的迭代搜索過程。單個點所提供的搜索信息不多,所以搜索效率不高,還有可能陷入局部最優(yōu)解而停滯;遺傳算法從由很多個體組成的初始種群開始最優(yōu)解的搜索過程,而不是從單個個體開始搜索。對初始群體進行的、選擇、交叉、變異等運算,產(chǎn)生出新一代群體,其中包括了許多群體信息。這些信息可以避免搜索一些不必要的點,從而避免陷入局部最優(yōu),逐步逼近全局最優(yōu)解。

(4) 使用概率搜索而非確定性規(guī)則。傳統(tǒng)的優(yōu)化算法往往使用確定性的搜索方法,一個搜索點到另一個搜索點的轉(zhuǎn)移有確定的轉(zhuǎn)移方向和轉(zhuǎn)移關(guān)系,這種確定性可能使得搜索達不到最優(yōu)店,限制了算法的應(yīng)用范圍。遺傳算法是一種自適應(yīng)搜索技術(shù),其選擇、交叉、變異等運算都是以一種概率方式進行的,增加了搜索過程的靈活性,而且能以較大概率收斂于最優(yōu)解,具有較好的全局優(yōu)化求解能力。但,交叉概率、變異概率等參數(shù)也會影響算法的搜索結(jié)果和搜索效率,所以如何選擇遺傳算法的參數(shù)在其應(yīng)用中是一個比較重要的問題。
綜上,由于遺傳算法的整體搜索策略和優(yōu)化搜索方式在計算時不依賴于梯度信息或其他輔助知識,只需要求解影響搜索方向的目標(biāo)函數(shù)和相應(yīng)的適應(yīng)度函數(shù),所以遺傳算法提供了一種求解復(fù)雜系統(tǒng)問題的通用框架。它不依賴于問題的具體領(lǐng)域,對問題的種類有很強的魯棒性,所以廣泛應(yīng)用于各種領(lǐng)域,包括:函數(shù)優(yōu)化、組合優(yōu)化生產(chǎn)調(diào)度問題、自動控制
、機器人學(xué)、圖像處理(圖像恢復(fù)、圖像邊緣特征提取…)、人工生命、遺傳編程、機器學(xué)習(xí)。

3 遺傳算法的基本流程及實現(xiàn)技術(shù)

基本遺傳算法(Simple Genetic Algorithms,SGA)只使用選擇算子、交叉算子和變異算子這三種遺傳算子,進化過程簡單,是其他遺傳算法的基礎(chǔ)。

3.1 遺傳算法的基本流程

通過隨機方式產(chǎn)生若干由確定長度(長度與待求解問題的精度有關(guān))編碼的初始群體;
通過適應(yīng)度函數(shù)對每個個體進行評價,選擇適應(yīng)度值高的個體參與遺傳操作,適應(yīng)度低的個體被淘汰;
經(jīng)遺傳操作(復(fù)制、交叉、變異)的個體集合形成新一代種群,直到滿足停止準(zhǔn)則(進化代數(shù)GEN>=?);
將后代中變現(xiàn)最好的個體作為遺傳算法的執(zhí)行結(jié)果。

在這里插入圖片描述

其中,GEN是當(dāng)前代數(shù);M是種群規(guī)模,i代表種群數(shù)量。

3.2 遺傳算法的實現(xiàn)技術(shù)

基本遺傳算法(SGA)由編碼、適應(yīng)度函數(shù)、遺傳算子(選擇、交叉、變異)及運行參數(shù)組成。

3.2.1 編碼

(1)二進制編碼
二進制編碼的字符串長度與問題所求解的精度有關(guān)。需要保證所求解空間內(nèi)的每一個個體都可以被編碼。
優(yōu)點:編、解碼操作簡單,遺傳、交叉便于實現(xiàn)
缺點:長度大

(2)其他編碼方法
格雷碼、浮點數(shù)編碼、符號編碼、多參數(shù)編碼等

3.2.2 適應(yīng)度函數(shù)

適應(yīng)度函數(shù)要有效反映每一個染色體與問題的最優(yōu)解染色體之間的差距。

3.2.3選擇算子

在這里插入圖片描述

3.2.4 交叉算子

交叉運算是指對兩個相互配對的染色體按某種方式相互交換其部分基因,從而形成兩個新的個體;交叉運算是遺傳算法區(qū)別于其他進化算法的重要特征,是產(chǎn)生新個體的主要方法。在交叉之前需要將群體中的個體進行配對,一般采取隨機配對原則。
常用的交叉方式:
單點交叉
雙點交叉(多點交叉,交叉點數(shù)越多,個體的結(jié)構(gòu)被破壞的可能性越大,一般不采用多點交叉的方式)
均勻交叉
算術(shù)交叉

3.2.5 變異算子

遺傳算法中的變異運算是指將個體染色體編碼串中的某些基因座上的基因值用該基因座的其他等位基因來替換,從而形成一個新的個體。

就遺傳算法運算過程中產(chǎn)生新個體的能力方面來說,交叉運算是產(chǎn)生新個體的主要方法,它決定了遺傳算法的全局搜索能力;而變異運算只是產(chǎn)生新個體的輔助方法,但也是必不可少的一個運算步驟,它決定了遺傳算法的局部搜索能力。交叉算子與變異算子的共同配合完成了其對搜索空間的全局搜索和局部搜索,從而使遺傳算法能以良好的搜索性能完成最優(yōu)化問題的尋優(yōu)過程。

3.2.6 運行參數(shù)

在這里插入圖片描述

4 遺傳算法的基本原理

4.1 模式定理

在這里插入圖片描述

4.2 積木塊假設(shè)

具有低階、定義長度短,且適應(yīng)度值高于群體平均適應(yīng)度值的模式稱為基因塊或積木塊。
積木塊假設(shè):個體的基因塊通過選擇、交叉、變異等遺傳算子的作用,能夠相互拼接在一起,形成適應(yīng)度更高的個體編碼串。
積木塊假設(shè)說明了用遺傳算法求解各類問題的基本思想,即通過積木塊直接相互拼接在一起能夠產(chǎn)生更好的解。

三、部分源代碼

clc;clear
%% 下載數(shù)據(jù)
% 加工數(shù)據(jù)包括加工時間,加工機器,機器數(shù),各機器權(quán)重,工件數(shù),各工件對應(yīng)的工序數(shù)
load data operation_time operation_machine num_machine machine_weight num_job num_op

%% 基本參數(shù)
MAXGEN = 200;               % 最大迭代次數(shù)
Ps = 0.8;                   % 選擇率
Pc = 0.7;                   % 交叉率
Pm = 0.3;                   % 變異率
sizepop = 200;              % 個體數(shù)目
e = 0.5;                    % 目標(biāo)值權(quán)重
trace = zeros(2,MAXGEN);

%% ===========================種群初始化============================
total_op_num=sum(num_op);
chroms=initialization(num_op,num_job,total_op_num,sizepop,operation_machine,operation_time);
[Z,~,~]=fitness(chroms,num_machine,e,num_job,num_op);

%% ============================迭代過程=============================
for gen=1:MAXGEN
    fprintf('當(dāng)前迭代次數(shù):'),disp(gen)
    % 輪盤賭選擇
    chroms_new=selection(chroms,Z,Ps);
    % 交叉操作
    chroms_new=crossover(chroms_new,Pc,total_op_num,num_job,num_op);
    % 變異操作
    chroms_new=mutation(chroms_new,total_op_num,Pm,num_machine,e,num_job,num_op,operation_machine,operation_time);
    % 計算選擇交叉變異后個體的適應(yīng)度
    [Z_new,~,~]=fitness(chroms_new,num_machine,e,num_job,num_op);
    % 根據(jù)適應(yīng)度在原種群和遺傳操作后的種群中選出sizepop個更優(yōu)個體
    [chroms,Z,chrom_best]=update_chroms(chroms,chroms_new,Z,Z_new,sizepop);
    % 記錄每代的最優(yōu)適應(yīng)度與平均適應(yīng)度
    trace(1, gen)=Z(1);       
    trace(2, gen)=mean(Z);  
    % 更新全局最優(yōu)適應(yīng)度
    if gen==1 || MinVal>trace(1,gen)
        MinVal=trace(1,gen);
function [Z,machine_weight,pvals] = fitness(chroms,num_machine,e,num_job,num_op)
sizepop=size(chroms,1);
pvals=cell(1,sizepop);
Z1=zeros(1,sizepop);
Z2=Z1;
total_op_num=sum(num_op);  % 總工序數(shù)
for k=1:sizepop
    chrom=chroms(k,:);
    machine=zeros(1,num_machine);  % 記錄各機器變化時間
    job=zeros(1,num_job);  % 記錄各工件變化時間
    machine_time=zeros(1,num_machine);  % 計算各機器的實際加工時間
    pval=zeros(2,total_op_num);  % 記錄各工序開始和結(jié)束時間
    for i=1:total_op_num
        % 機器時間大于工件時間
        if machine(chrom(total_op_num+i))>=job(chrom(i))
            pval(1,i)=machine(chrom(total_op_num+i));  % 記錄工件開始時間
            machine(chrom(total_op_num+i))=machine(chrom(total_op_num+i))+chrom(total_op_num*2+i);
            job(chrom(i))=machine(chrom(total_op_num+i));
            pval(2,i)=machine(chrom(total_op_num+i));  % 記錄工件結(jié)束時間
            % 機器時間小于工件時間
        else
            pval(1,i)=job(chrom(i));
            job(chrom(i))=job(chrom(i))+chrom(total_op_num*2+i);
            machine(chrom(total_op_num+i))=job(chrom(i));
            pval(2,i)=job(chrom(i));
        end
        machine_time(chrom(total_op_num+i))=machine_time(chrom(total_op_num+i))+chrom(total_op_num*2+i);
    end
    Z1(k)=max(machine);  % 最大機器時間值,對應(yīng)makespan
    % machine_weight=machine_time/sum(machine_time);  % 計算各機器的負(fù)荷
    machine_weight=machine_time;
    Z2(k)=max(machine_weight)-min(machine_weight);
    pvals{k}=pval;
end
% min_makespan=min(Z1);%所有染色體的makespan最優(yōu)值
% max_makespan=max(Z1);
% min_weight=min(Z2);%負(fù)載最優(yōu)值
% max_weight=max(Z2);
% Z=e*((Z1-min_makespan)./(max_makespan-min_makespan))+(1-e)*((Z2-min_weight)./(max_weight-min_weight));%計算適應(yīng)度
Z=e*Z1+(1-e)*Z2;

function [ chroms_new] = crossover(chroms,Pc,total_op_num,num_job,num_op)
size_chrom=size(chroms,1);  % 染色體數(shù)
chroms_new=chroms;
%% 面向工序碼的交叉操作
for i=1:2:size_chrom-1 
    if Pc>rand
        % 父代染色體
        parent1=chroms(i,:);
        parent2=chroms(i+1,:);
        Job=randperm(num_job);
        % 將工件隨機分成兩個集合
        J1=Job(1:round(num_job/2));
        J2=Job(length(J1)+1:end);
        % 子代染色體
        child1=parent1;
        child2=parent2;
        op_p1=[];
        op_p2=[];
        for j=1:length(J2)
            %找出父代中J2片段對應(yīng)的位置
            op_p1=[op_p1,find(parent1(1:total_op_num)==J2(j))];
            op_p2=[op_p2,find(parent2(1:total_op_num)==J2(j))];
        end
        op_s1=sort(op_p1);
        op_s2=sort(op_p2);
        % 子代1交換J2片段的基因,機器碼對應(yīng)位置的基因,工時碼對應(yīng)位置的基因
        child1(op_s1)=parent2(op_s2);
        child1(total_op_num+op_s1)=parent2(total_op_num+op_s2);
        child1(total_op_num*2+op_s1)=parent2(total_op_num*2+op_s2);
        % 子代2同理
        child2(op_s2)=parent1(op_s1);
        child2(total_op_num+op_s2)=parent1(total_op_num+op_s1);
        child2(total_op_num*2+op_s2)=parent1(total_op_num*2+op_s1);
        chroms_new(i,:)=child1;
        chroms_new(i+1,:)=child2;
    end
end
%% 面向機器碼的交叉操作
for k=1:2:size_chrom-1
    if Pc>rand
        parent1=chroms_new(k,:);
        parent2=chroms_new(k+1,:);
        child1=parent1;
        child2=parent2;
        % 隨機產(chǎn)生與染色體長度相等的0,1序列
        rand0_1=randi([0,1],1,total_op_num);
        for n=1:num_job
            ind_0=find(rand0_1(num_op(n)*(n-1)+1:num_op(n)*n)==0);
            if ~isempty(ind_0)
                temp1=find(parent1(1:total_op_num)==n);
                temp2=find(parent2(1:total_op_num)==n);
                child1(total_op_num+temp1(ind_0))=parent2(total_op_num+temp2(ind_0));
                child2(total_op_num+temp2(ind_0))=parent1(total_op_num+temp1(ind_0));
                child1(total_op_num*2+temp1(ind_0))=parent2(total_op_num*2+temp2(ind_0));
                child2(total_op_num*2+temp2(ind_0))=parent1(total_op_num*2+temp1(ind_0));
            end
        end
        chroms_new(k,:)=child1;
        chroms_new(k+1,:)=child2;
    end
end
end

四、運行結(jié)果

在這里插入圖片描述

在這里插入圖片描述

五、matlab版本及參考文獻

1 matlab版本
2014a

2 參考文獻
[1] 包子陽,余繼周,楊杉.智能優(yōu)化算法及其MATLAB實例(第2版)[M].電子工業(yè)出版社,2016.
[2]張巖,吳水根.MATLAB優(yōu)化算法源代碼[M].清華大學(xué)出版社,2017.

以上就是matlab遺傳算法求解車間調(diào)度問題解析的詳細(xì)內(nèi)容,更多關(guān)于matlab遺傳算法求解車間調(diào)度的資料請關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • linux下C/C++學(xué)生信息管理系統(tǒng)

    linux下C/C++學(xué)生信息管理系統(tǒng)

    這篇文章主要為大家詳細(xì)介紹了linux下c/c++學(xué)生信息管理系統(tǒng),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2018-01-01
  • C++哈希應(yīng)用的位圖和布隆過濾器

    C++哈希應(yīng)用的位圖和布隆過濾器

    這篇文章主要介紹了C++哈希應(yīng)用的位圖和布隆過濾器的相關(guān)資料,文章內(nèi)容多以列舉試題的方式講解,感興趣的朋友可以參考下面文章內(nèi)容
    2021-09-09
  • 使用?Visual?Studio?2022?開發(fā)?Linux?C++?應(yīng)用程序的過程詳解

    使用?Visual?Studio?2022?開發(fā)?Linux?C++?應(yīng)用程序的過程詳解

    Visual?Studio?2022?引入了用于?Linux?C++?開發(fā)的本機?WSL2?工具集,可以構(gòu)建和調(diào)試?Linux?C++?代碼,并提供了非常好的?Linux?文件系統(tǒng)性能、GUI?支持和完整的系統(tǒng)調(diào)用兼容性,這篇文章主要介紹了使用Visual?Studio?2022?開發(fā)?Linux?C++?應(yīng)用程序,需要的朋友可以參考下
    2021-11-11
  • 對C語言中指針的理解與其基礎(chǔ)使用實例

    對C語言中指針的理解與其基礎(chǔ)使用實例

    這篇文章主要介紹了對C語言中指針的理解與其基礎(chǔ)使用實例,文中援引了知乎熱門問題"為什么說指針是 C 語言的精髓?"中的精彩回答,需要的朋友可以參考下
    2016-03-03
  • C++:string字符串的切片方式

    C++:string字符串的切片方式

    這篇文章主要介紹了C++:string字符串的切片方式,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2023-06-06
  • vscode調(diào)試gstreamer源碼的詳細(xì)流程

    vscode調(diào)試gstreamer源碼的詳細(xì)流程

    在本文中主要介紹了如何使用vscode調(diào)試C++和python程序,并進一步分析了如何調(diào)試gstreamer源碼,講述了如何調(diào)試gstreamer源碼的具體流程,感興趣的朋友跟隨小編一起看看吧
    2023-01-01
  • Qt數(shù)據(jù)庫應(yīng)用之實現(xiàn)數(shù)據(jù)分組導(dǎo)出

    Qt數(shù)據(jù)庫應(yīng)用之實現(xiàn)數(shù)據(jù)分組導(dǎo)出

    這篇文章主要為大家詳細(xì)介紹了如何利用Qt實現(xiàn)數(shù)據(jù)庫數(shù)據(jù)分組導(dǎo)出,文中的示例代碼講解詳細(xì),對我們學(xué)習(xí)或工作有一定參考價值,需要的可以了解一下
    2022-06-06
  • C語言實現(xiàn)停車管理系統(tǒng)

    C語言實現(xiàn)停車管理系統(tǒng)

    這篇文章主要為大家詳細(xì)介紹了C語言實現(xiàn)停車管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2022-03-03
  • C++使用鏈表實現(xiàn)圖書管理系統(tǒng)

    C++使用鏈表實現(xiàn)圖書管理系統(tǒng)

    這篇文章主要介紹了C++使用鏈表實現(xiàn)圖書管理系統(tǒng),文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2022-03-03
  • 詳解c語言中的 strcpy和strncpy字符串函數(shù)使用

    詳解c語言中的 strcpy和strncpy字符串函數(shù)使用

    strcpy 和strcnpy函數(shù)是字符串復(fù)制函數(shù)。接下來通過本文給大家介紹c語言中的strcpy和strncpy字符串函數(shù)使用,感興趣的朋友跟隨小編要求看看吧
    2018-10-10

最新評論