欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Java各種鎖在工作中使用場景和細節(jié)經驗總結

 更新時間:2022年03月11日 14:50:01   作者:Q.E.D  
本章主要說一說鎖在工作中的使用場景,主要以 synchronized 和 CountDownLatch 為例,會分別描述一下這兩種鎖的使用場景和姿勢

1、synchronized

synchronized 是可重入的排它鎖,和 ReentrantLock 鎖功能相似,任何使用 synchronized 的地方,幾乎都可以使用 ReentrantLock 來代替,兩者最大的相似點就是:可重入 + 排它鎖,兩者的區(qū)別主要有這些:

  • ReentrantLock 的功能更加豐富,比如提供了 Condition,可以打斷的加鎖 API、能滿足鎖 + 隊列的復雜場景等等;
  • ReentrantLock 有公平鎖和非公平鎖之分,而 synchronized 都是非公平鎖;
  • 兩者的使用姿勢也不同,ReentrantLock 需要申明,有加鎖和釋放鎖的 API,而 synchronized 會自動對代碼塊進行加鎖釋放鎖的操作,synchronized 使用起來更加方便。

synchronized 和 ReentrantLock 功能相近,所以我們就以 synchronized 舉例。

1.1、共享資源初始化

在分布式的系統(tǒng)中,我們喜歡把一些死的配置資源在項目啟動的時候加鎖到 JVM 內存里面去,這樣請求在拿這些共享配置資源時,就可直接從內存里面拿,不必每次都從數(shù)據庫中拿,減少了時間開銷。

一般這樣的共享資源有:死的業(yè)務流程配置 + 死的業(yè)務規(guī)則配置。

共享資源初始化的步驟一般為:項目啟動 -> 觸發(fā)初始化動作 ->單線程從數(shù)據庫中撈取數(shù)據 -> 組裝成我們需要的數(shù)據結構 -> 放到 JVM 內存中。

在項目啟動時,為了防止共享資源被多次加載,我們往往會加上排它鎖,讓一個線程加載共享資源完成之后,另外一個線程才能繼續(xù)加載,此時的排它鎖我們可以選擇 synchronized 或者 ReentrantLock,我們以 synchronized 為例,寫了 mock 的代碼,如下:

  // 共享資源
  private static final Map<String, String> SHARED_MAP = Maps.newConcurrentMap();
  // 有無初始化完成的標志位
  private static boolean loaded = false;
   /**
   * 初始化共享資源
   */
  @PostConstruct
  public void init(){
    if(loaded){
      return;
    }
    synchronized (this){
      // 再次 check
      if(loaded){
        return;
      }
      log.info("SynchronizedDemo init begin");
      // 從數(shù)據庫中撈取數(shù)據,組裝成 SHARED_MAP 的數(shù)據格式
      loaded = true;
      log.info("SynchronizedDemo init end");
    }
  }

不知道大家有沒有從上述代碼中發(fā)現(xiàn) @PostConstruct 注解,@PostConstruct 注解的作用是在 Spring 容器初始化時,再執(zhí)行該注解打上的方法,也就是說上圖說的 init 方法觸發(fā)的時機,是在 Spring 容器啟動的時候。

大家可以下載演示代碼,找到 DemoApplication 啟動文件,在 DemoApplication 文件上右擊 run,就可以啟動整個 Spring Boot 項目,在 init 方法上打上斷點就可以調試了。

我們在代碼中使用了 synchronized 來保證同一時刻,只有一個線程可以執(zhí)行初始化共享資源的操作,并且我們加了一個共享資源加載完成的標識位(loaded),來判斷是否加載完成了,如果加載完成,那么其它加載線程直接返回。

如果把 synchronized 換成 ReentrantLock 也是一樣的實現(xiàn),只不過需要顯示的使用 ReentrantLock 的 API 進行加鎖和釋放鎖,使用 ReentrantLock 有一點需要注意的是,我們需要在 try 方法塊中加鎖,在 finally 方法塊中釋放鎖,這樣保證即使 try 中加鎖后發(fā)生異常,在 finally 中也可以正確的釋放鎖。

有的同學可能會問,不是可以直接使用了 ConcurrentHashMap 么,為什么還需要加鎖呢?的確 ConcurrentHashMap 是線程安全的,但它只能夠保證 Map 內部數(shù)據操作時的線程安全,是無法保證多線程情況下,查詢數(shù)據庫并組裝數(shù)據的整個動作只執(zhí)行一次的,我們加 synchronized 鎖住的是整個操作,保證整個操作只執(zhí)行一次。

2、CountDownLatch

2.1、場景

1:小明在淘寶上買了一個商品,覺得不好,把這個商品退掉(商品還沒有發(fā)貨,只退錢),我們叫做單商品退款,單商品退款在后臺系統(tǒng)中運行時,整體耗時 30 毫秒。

2:雙 11,小明在淘寶上買了 40 個商品,生成了同一個訂單(實際可能會生成多個訂單,為了方便描述,我們說成一個),第二天小明發(fā)現(xiàn)其中 30 個商品是自己沖動消費的,需要把 30 個商品一起退掉。

2.2、實現(xiàn)

此時后臺只有單商品退款的功能,沒有批量商品退款的功能(30 個商品一次退我們稱為批量),為了快速實現(xiàn)這個功能,同學 A 按照這樣的方案做的:for 循環(huán)調用 30 次單商品退款的接口,在 qa 環(huán)境測試的時候發(fā)現(xiàn),如果要退款 30 個商品的話,需要耗時:30 * 30 = 900 毫秒,再加上其它的邏輯,退款 30 個商品差不多需要 1 秒了,這個耗時其實算很久了,當時同學 A 提出了這個問題,希望大家?guī)兔纯慈绾蝺?yōu)化整個場景的耗時。

同學 B 當時就提出,你可以使用線程池進行執(zhí)行呀,把任務都提交到線程池里面去,假如機器的 CPU 是 4 核的,最多同時能有 4 個單商品退款可以同時執(zhí)行,同學 A 覺得很有道理,于是準備修改方案,為了便于理解,我們把兩個方案都畫出來,對比一下:

圖片描述

同學 A 于是就按照演變的方案去寫代碼了,過了一天,拋出了一個問題:向線程池提交了 30 個任務后,主線程如何等待 30 個任務都執(zhí)行完成呢?因為主線程需要收集 30 個子任務的執(zhí)行情況,并匯總返回給前端。

大家可以先不往下看,自己先思考一下,我們前幾章說的那種鎖可以幫助解決這個問題?

CountDownLatch 可以的,CountDownLatch 具有這種功能,讓主線程去等待子任務全部執(zhí)行完成之后才繼續(xù)執(zhí)行。

此時還有一個關鍵,我們需要知道子線程執(zhí)行的結果,所以我們用 Runnable 作為線程任務就不行了,因為 Runnable 是沒有返回值的,我們需要選擇 Callable 作為任務。

我們寫了一個 demo,首先我們來看一下單個商品退款的代碼:

// 單商品退款,耗時 30 毫秒,退款成功返回 true,失敗返回 false
@Slf4j
public class RefundDemo {
  /**
   * 根據商品 ID 進行退款
   * @param itemId
   * @return
   */
  public boolean refundByItem(Long itemId) {
    try {
      // 線程沉睡 30 毫秒,模擬單個商品退款過程
      Thread.sleep(30);
      log.info("refund success,itemId is {}", itemId);
      return true;
    } catch (Exception e) {
      log.error("refundByItemError,itemId is {}", itemId);
      return false;
    }
  }
}

接著我們看下 30 個商品的批量退款,代碼如下:

@Slf4j
public class BatchRefundDemo {
	// 定義線程池
  public static final ExecutorService EXECUTOR_SERVICE =
      new ThreadPoolExecutor(10, 10, 0L,
                                TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<>(20));
  @Test
  public void batchRefund() throws InterruptedException {
    // state 初始化為 30 
    CountDownLatch countDownLatch = new CountDownLatch(30);
    RefundDemo refundDemo = new RefundDemo();
 
    // 準備 30 個商品
    List<Long> items = Lists.newArrayListWithCapacity(30);
    for (int i = 0; i < 30; i++) {
      items.add(Long.valueOf(i+""));
    }
 
    // 準備開始批量退款
    List<Future> futures = Lists.newArrayListWithCapacity(30);
    for (Long item : items) {
      // 使用 Callable,因為我們需要等到返回值
      Future<Boolean> future = EXECUTOR_SERVICE.submit(new Callable<Boolean>() {
        @Override
        public Boolean call() throws Exception {
          boolean result = refundDemo.refundByItem(item);
          // 每個子線程都會執(zhí)行 countDown,使 state -1 ,但只有最后一個才能真的喚醒主線程
          countDownLatch.countDown();
          return result;
        }
      });
      // 收集批量退款的結果
      futures.add(future);
    }
 
    log.info("30 個商品已經在退款中");
    // 使主線程阻塞,一直等待 30 個商品都退款完成,才能繼續(xù)執(zhí)行
    countDownLatch.await();
    log.info("30 個商品已經退款完成");
    // 拿到所有結果進行分析
    List<Boolean> result = futures.stream().map(fu-> {
      try {
        // get 的超時時間設置的是 1 毫秒,是為了說明此時所有的子線程都已經執(zhí)行完成了
        return (Boolean) fu.get(1,TimeUnit.MILLISECONDS);
      } catch (InterruptedException e) {
        e.printStackTrace();
      } catch (ExecutionException e) {
        e.printStackTrace();
      } catch (TimeoutException e) {
        e.printStackTrace();
      }
      return false;
    }).collect(Collectors.toList());
    // 打印結果統(tǒng)計
    long success = result.stream().filter(r->r.equals(true)).count();
    log.info("執(zhí)行結果成功{},失敗{}",success,result.size()-success);
  }
}

上述代碼只是大概的底層思路,真實的項目會在此思路之上加上請求分組,超時打斷等等優(yōu)化措施。

我們來看一下執(zhí)行的結果:

圖片描述

從執(zhí)行的截圖中,我們可以明顯的看到 CountDownLatch 已經發(fā)揮出了作用,主線程會一直等到 30 個商品的退款結果之后才會繼續(xù)執(zhí)行。

接著我們做了一個不嚴謹?shù)膶嶒灒ò岩陨洗a執(zhí)行很多次,求耗時平均值),通過以上代碼,30 個商品退款完成之后,整體耗時大概在 200 毫秒左右。

而通過 for 循環(huán)單商品進行退款,大概耗時在 1 秒左右,前后性能相差 5 倍左右,for 循環(huán)退款的代碼如下:

long begin1 = System.currentTimeMillis();
for (Long item : items) {
  refundDemo.refundByItem(item);
}
log.info("for 循環(huán)單個退款耗時{}",System.currentTimeMillis()-begin1);

 性能的巨大提升是線程池 + 鎖兩者結合的功勞。

3、總結

本章舉了實際工作中的兩個小案列,看到了 CountDownLatch 和 synchronized(ReentrantLock) 是如何結合實際需求進行落地的,特別是 CountDownLatch 的案列,使用線程池 + 鎖結合的方式大大提高了生產效率,所以在工作中如果你也遇到相似的場景,可以毫不猶豫地用起來。

以上就是Java各種鎖在工作中使用場景和細節(jié)經驗總結的詳細內容,更多關于Java鎖在工作中使用場景細節(jié)的資料請關注腳本之家其它相關文章!

相關文章

最新評論