C++單例模式的幾種實現(xiàn)方法詳解
局部靜態(tài)變量方式
//通過靜態(tài)成員變量實現(xiàn)單例
//懶漢式
class Single2
{
private:
Single2()
{
}
Single2(const Single2 &) = delete;
Single2 &operator=(const Single2 &) = delete;
public:
static Single2 &GetInst()
{
static Single2 single;
return single;
}
};
上述代碼通過局部靜態(tài)成員single實現(xiàn)單例類,原理就是函數(shù)的局部靜態(tài)變量生命周期隨著進(jìn)程結(jié)束而結(jié)束。上述代碼通過懶漢式的方式實現(xiàn)。
調(diào)用如下
void test_single2()
{
//多線程情況下可能存在問題
cout << "s1 addr is " << &Single2::GetInst() << endl;
cout << "s2 addr is " << &Single2::GetInst() << endl;
}
程序輸出如下
sp1 is 0x1304b10
sp2 is 0x1304b10
確實生成了唯一實例,上述單例模式存在隱患,對于多線程方式生成的實例可能時多個。
靜態(tài)成員變量指針方式
可以定義一個類的靜態(tài)成員變量,用來控制實現(xiàn)單例
//餓漢式
class Single2Hungry
{
private:
Single2Hungry()
{
}
Single2Hungry(const Single2Hungry &) = delete;
Single2Hungry &operator=(const Single2Hungry &) = delete;
public:
static Single2Hungry *GetInst()
{
if (single == nullptr)
{
single = new Single2Hungry();
}
return single;
}
private:
static Single2Hungry *single;
};
這么做的一個好處是我們可以通過餓漢式的方式避免線程安全問題
//餓漢式初始化
Single2Hungry *Single2Hungry::single = Single2Hungry::GetInst();
void thread_func_s2(int i)
{
cout << "this is thread " << i << endl;
cout << "inst is " << Single2Hungry::GetInst() << endl;
}
void test_single2hungry()
{
cout << "s1 addr is " << Single2Hungry::GetInst() << endl;
cout << "s2 addr is " << Single2Hungry::GetInst() << endl;
for (int i = 0; i < 3; i++)
{
thread tid(thread_func_s2, i);
tid.join();
}
}
int main(){
test_single2hungry()
}
程序輸出如下
s1 addr is 0x1e4b00
s2 addr is 0x1e4b00
this is thread 0
inst is 0x1e4b00
this is thread 1
inst is 0x1e4b00
this is thread 2
inst is 0x1e4b00
可見無論單線程還是多線程模式下,通過靜態(tài)成員變量的指針實現(xiàn)的單例類都是唯一的。餓漢式是在程序啟動時就進(jìn)行單例的初始化,這種方式也可以通過懶漢式調(diào)用,無論餓漢式還是懶漢式都存在一個問題,就是什么時候釋放內(nèi)存?多線程情況下,釋放內(nèi)存就很難了,還有二次釋放內(nèi)存的風(fēng)險。
我們定義一個單例類并用懶漢式方式調(diào)用
//懶漢式指針
//即使創(chuàng)建指針類型也存在問題
class SinglePointer
{
private:
SinglePointer()
{
}
SinglePointer(const SinglePointer &) = delete;
SinglePointer &operator=(const SinglePointer &) = delete;
public:
static SinglePointer *GetInst()
{
if (single != nullptr)
{
return single;
}
s_mutex.lock();
if (single != nullptr)
{
s_mutex.unlock();
return single;
}
single = new SinglePointer();
s_mutex.unlock();
return single;
}
private:
static SinglePointer *single;
static mutex s_mutex;
};
在cpp文件里初始化靜態(tài)成員,并定義一個測試函數(shù)
//懶漢式
//在類的cpp文件定義static變量
SinglePointer *SinglePointer::single = nullptr;
std::mutex SinglePointer::s_mutex;
void thread_func_lazy(int i)
{
cout << "this is lazy thread " << i << endl;
cout << "inst is " << SinglePointer::GetInst() << endl;
}
void test_singlelazy()
{
for (int i = 0; i < 3; i++)
{
thread tid(thread_func_lazy, i);
tid.join();
}
//何時釋放new的對象?造成內(nèi)存泄漏
}
int main(){
test_singlelazy();
}
函數(shù)輸出如下
this is lazy thread 0 inst is 0xbc1700 this is lazy thread 1 inst is 0xbc1700 this is lazy thread 2 inst is 0xbc1700
此時生成的單例對象的內(nèi)存空間還沒回收,這是個問題,另外如果多線程情況下多次delete也會造成崩潰。
智能指針方式
可以利用智能指針自動回收內(nèi)存的機(jī)制設(shè)計單例類
//利用智能指針解決釋放問題
class SingleAuto
{
private:
SingleAuto()
{
}
SingleAuto(const SingleAuto &) = delete;
SingleAuto &operator=(const SingleAuto &) = delete;
public:
~SingleAuto()
{
cout << "single auto delete success " << endl;
}
static std::shared_ptr<SingleAuto> GetInst()
{
if (single != nullptr)
{
return single;
}
s_mutex.lock();
if (single != nullptr)
{
s_mutex.unlock();
return single;
}
single = std::shared_ptr<SingleAuto>(new SingleAuto);
s_mutex.unlock();
return single;
}
private:
static std::shared_ptr<SingleAuto> single;
static mutex s_mutex;
};
SingleAuto的GetInst返回std::shared_ptr類型的變量single。因為single是靜態(tài)成員變量,所以會在進(jìn)程結(jié)束時被回收。智能指針被回收時會調(diào)用內(nèi)置指針類型的析構(gòu)函數(shù),從而完成內(nèi)存的回收。
在主函數(shù)調(diào)用如下測試函數(shù)
// 智能指針方式
std::shared_ptr<SingleAuto> SingleAuto::single = nullptr;
mutex SingleAuto::s_mutex;
void test_singleauto()
{
auto sp1 = SingleAuto::GetInst();
auto sp2 = SingleAuto::GetInst();
cout << "sp1 is " << sp1 << endl;
cout << "sp2 is " << sp2 << endl;
//此時存在隱患,可以手動刪除裸指針,造成崩潰
// delete sp1.get();
}
int main(){
test_singleauto();
}
程序輸出如下
sp1 is 0x1174f30
sp2 is 0x1174f30
智能指針方式不存在內(nèi)存泄漏,但是有一個隱患就是單例類的析構(gòu)函數(shù)時public的,如果被人手動調(diào)用會存在崩潰問題,比如將上邊test_singleauto中的注釋打開,程序會崩潰。
輔助類智能指針單例模式
智能指針在構(gòu)造的時候可以指定刪除器,所以可以傳遞一個輔助類或者輔助函數(shù)幫助智能指針回收內(nèi)存時調(diào)用我們指定的析構(gòu)函數(shù)。
// safe deletor
//防止外界delete
//聲明輔助類
//該類定義仿函數(shù)調(diào)用SingleAutoSafe析構(gòu)函數(shù)
//不可以提前聲明SafeDeletor,編譯時會提示incomplete type
// class SafeDeletor;
//所以要提前定義輔助類
class SingleAutoSafe;
class SafeDeletor
{
public:
void operator()(SingleAutoSafe *sf)
{
cout << "this is safe deleter operator()" << endl;
delete sf;
}
};
class SingleAutoSafe
{
private:
SingleAutoSafe() {}
~SingleAutoSafe()
{
cout << "this is single auto safe deletor" << endl;
}
SingleAutoSafe(const SingleAutoSafe &) = delete;
SingleAutoSafe &operator=(const SingleAutoSafe &) = delete;
//定義友元類,通過友元類調(diào)用該類析構(gòu)函數(shù)
friend class SafeDeletor;
public:
static std::shared_ptr<SingleAutoSafe> GetInst()
{
if (single != nullptr)
{
return single;
}
s_mutex.lock();
if (single != nullptr)
{
s_mutex.unlock();
return single;
}
//額外指定刪除器
single = std::shared_ptr<SingleAutoSafe>(new SingleAutoSafe, SafeDeletor());
//也可以指定刪除函數(shù)
// single = std::shared_ptr<SingleAutoSafe>(new SingleAutoSafe, SafeDelFunc);
s_mutex.unlock();
return single;
}
private:
static std::shared_ptr<SingleAutoSafe> single;
static mutex s_mutex;
};
SafeDeletor要寫在SingleAutoSafe上邊,并且SafeDeletor要聲明為SingleAutoSafe類的友元類,這樣就可以訪問SingleAutoSafe的析構(gòu)函數(shù)了。
我們在構(gòu)造single時制定了SafeDeletor(),single在回收時,會調(diào)用SingleAutoSafe的仿函數(shù),從而完成內(nèi)存的銷毀。
并且SingleAutoSafe的析構(gòu)函數(shù)為私有的無法被外界手動調(diào)用了。
//智能指針初始化為nullptr
std::shared_ptr<SingleAutoSafe> SingleAutoSafe::single = nullptr;
mutex SingleAutoSafe::s_mutex;
void test_singleautosafe()
{
auto sp1 = SingleAutoSafe::GetInst();
auto sp2 = SingleAutoSafe::GetInst();
cout << "sp1 is " << sp1 << endl;
cout << "sp2 is " << sp2 << endl;
//此時無法訪問析構(gòu)函數(shù),非常安全
// delete sp1.get();
}
int main(){
test_singleautosafe();
}
程序輸出如下
sp1 is 0x1264f30 sp2 is 0x1264f30
通過輔助類調(diào)用單例類的析構(gòu)函數(shù)保證了內(nèi)存釋放的安全性和唯一性。這種方式時生產(chǎn)中常用的。如果將test_singleautosafe函數(shù)的注釋打開,手動delete sp1.get()編譯階段就會報錯,達(dá)到了代碼安全的目的。因為析構(gòu)被設(shè)置為私有函數(shù)了。
通用的單例模板類
我們可以通過聲明單例的模板類,然后繼承這個單例模板類的所有類就是單例類了。達(dá)到泛型編程提高效率的目的。
template <typename T>
class Single_T
{
protected:
Single_T() = default;
Single_T(const Single_T<T> &st) = delete;
Single_T &operator=(const Single_T<T> &st) = delete;
~Single_T()
{
cout << "this is auto safe template destruct" << endl;
}
public:
static std::shared_ptr<T> GetInst()
{
if (single != nullptr)
{
return single;
}
s_mutex.lock();
if (single != nullptr)
{
s_mutex.unlock();
return single;
}
//額外指定刪除器
single = std::shared_ptr<T>(new T, SafeDeletor_T<T>());
//也可以指定刪除函數(shù)
// single = std::shared_ptr<SingleAutoSafe>(new SingleAutoSafe, SafeDelFunc);
s_mutex.unlock();
return single;
}
private:
static std::shared_ptr<T> single;
static mutex s_mutex;
};
//模板類的static成員要放在h文件里初始化
template <typename T>
std::shared_ptr<T> Single_T<T>::single = nullptr;
template <typename T>
mutex Single_T<T>::s_mutex;
我們定義一個網(wǎng)絡(luò)的單例類,繼承上述模板類即可,并將構(gòu)造和析構(gòu)設(shè)置為私有,同時設(shè)置友元保證自己的析構(gòu)和構(gòu)造可以被友元類調(diào)用.
//通過繼承方式實現(xiàn)網(wǎng)絡(luò)模塊單例
class SingleNet : public Single_T<SingleNet>
{
private:
SingleNet() = default;
SingleNet(const SingleNet &) = delete;
SingleNet &operator=(const SingleNet &) = delete;
~SingleNet() = default;
friend class SafeDeletor_T<SingleNet>;
friend class Single_T<SingleNet>;
};
在主函數(shù)中調(diào)用如下
void test_singlenet()
{
auto sp1 = SingleNet::GetInst();
auto sp2 = SingleNet::GetInst();
cout << "sp1 is " << sp1 << endl;
cout << "sp2 is " << sp2 << endl;
}
程序輸出如下
sp1 is 0x1164f30
sp2 is 0x1164f30
總結(jié)
本篇文章就到這里了,希望能夠給你帶來幫助,也希望您能夠多多關(guān)注腳本之家的更多內(nèi)容!
相關(guān)文章
如何在c++中實現(xiàn)字符串分割函數(shù)split詳解
這篇文章主要給大家介紹了關(guān)于如何在c++中實現(xiàn)字符串分割函數(shù)split的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對大家學(xué)習(xí)或者使用c++具有一定的參考學(xué)習(xí)價值,需要的朋友們下面來一起學(xué)習(xí)學(xué)習(xí)吧2019-11-11

