C++高級(jí)數(shù)據(jù)結(jié)構(gòu)之線段樹
前言:
- 高級(jí)數(shù)據(jù)結(jié)構(gòu)(Ⅲ)線段樹(Segment Tree)
- 線段樹的原理
- 樹的創(chuàng)建
- 單點(diǎn)修改
- 區(qū)間查找
- 完整代碼及測(cè)試
高級(jí)數(shù)據(jù)結(jié)構(gòu)(Ⅲ)線段樹(Segment Tree)
線段樹的原理
線段樹是一種二叉搜索樹 , 對(duì)于線段樹中的每一個(gè)非葉子結(jié)點(diǎn)[a,b],它的左兒子表示的區(qū)間為[a, (a+b)/2],右兒子表示的區(qū)間為[(a+b)/2+1, b]。因此線段樹是平衡二叉樹,最后的子節(jié)點(diǎn)數(shù)目為N,即整個(gè)線段區(qū)間的長(zhǎng)度,其空間復(fù)雜度為O(n)。
若對(duì)于一個(gè)數(shù)組使用前綴和數(shù)組保存它的區(qū)間和,那么查找區(qū)間和時(shí)間復(fù)雜度為O(1),而區(qū)間修改時(shí)間復(fù)雜度為O(n)。使用線段樹可以快速查找或修改某個(gè)區(qū)間的值,時(shí)間復(fù)雜度為O(logN)。
線段樹中每一個(gè)結(jié)點(diǎn)代表一個(gè)區(qū)間,對(duì)于區(qū)間【1, 7】線段樹的結(jié)構(gòu)如下圖

實(shí)例:
class SegmentTree{
private static final int[] tree = new int[1000];
int[] arr;
SegmentTree() {
}
SegmentTree(int[] arr) {
this.arr = arr;
}
//創(chuàng)建樹···
public void buildTree(){}
//單點(diǎn)修改更新樹
public void updateTree(){}
//區(qū)間查找
public void queryTree(){}
}樹的創(chuàng)建
給定一個(gè)數(shù)組arr = [6, 4, 7, 5, 8, 3 , 9],創(chuàng)建它對(duì)應(yīng)的線段樹數(shù)組。
對(duì)于一個(gè)結(jié)點(diǎn)k,它的左孩子為2 * k,右孩子為 2 * k + 1,此公式適用于根結(jié)點(diǎn)從1開始。但我們?cè)跀?shù)組中存儲(chǔ)元素時(shí)下標(biāo)通常是從0開始的,即根結(jié)點(diǎn)從0開始,此時(shí)它的左孩子為 2 * k + 1, 右孩子為 2 * k + 2。
如下圖所示,數(shù)組arr的長(zhǎng)度為7,由于樹是以2為基數(shù)的,且線段樹中葉子結(jié)點(diǎn)保存的是arr中單個(gè)結(jié)點(diǎn)的值,我們可以將數(shù)組arr的長(zhǎng)度設(shè)想為8 (2 ^ 3 = 8,理解為新添了一個(gè)元素0,這對(duì)區(qū)間和并不影響),此時(shí)它對(duì)應(yīng)的線段樹就是一棵結(jié)點(diǎn)數(shù)為15(1 + 2 + 4 + 8)的滿二叉樹。相應(yīng)的結(jié)點(diǎn)值,映射到數(shù)組tree的值在圖中可清晰的看出。

那么,如何用處程序來創(chuàng)建一棵樹呢?
由于線段樹葉子結(jié)點(diǎn)都是數(shù)組arr中的某一元素,所以我們可以使用兩個(gè)變量low和high來標(biāo)記數(shù)組arr的區(qū)間,
- 若low == high,此時(shí)令tree[node] = arr[low],并終止遞歸
- 否則,將區(qū)間二分,分別計(jì)算左區(qū)間[low, mid]和右區(qū)間[mid +1, high],并在最后更新tree[node]
實(shí)現(xiàn):
//創(chuàng)建樹
public void buildTree() {
this.buildTree(0, 0, arr.length - 1);
}
private void buildTree(int node, int low, int high) {
if(low == high) {
tree[node] = arr[low];
return;
}
int mid = low + (high - low) / 2;
int lnode = 2 * node + 1;
int rnode = 2 * node + 2;
buildTree(lnode, low, mid);
buildTree(rnode, mid + 1, high);
tree[node] = tree[lnode] + tree[rnode];
}單點(diǎn)修改
若現(xiàn)在將arr[4]的值修改為1,需要怎樣操作呢?
從下圖綠色標(biāo)出的結(jié)點(diǎn)不難看出其更新過程,先將其所對(duì)應(yīng)的葉子結(jié)點(diǎn)修改,然后繼續(xù)向上修改其父節(jié)點(diǎn)即可。

當(dāng)long==high&&low==index時(shí)更新兩個(gè)數(shù)組的值,否則,縮小區(qū)間,在相應(yīng)的區(qū)間搜索,最后更新結(jié)點(diǎn)和即可,相應(yīng)代碼如下
//單點(diǎn)修改更新樹
public void updateTree(int index, int val) {
this.updateTree(0, 0, arr.length - 1, index, val);
}
private void updateTree(int node, int low, int high, int index, int val) {
if(low == high && low == index) {
arr[index] = val;
tree[node] = val;
return;
}
int mid = low + (high - low) / 2;
int lnode = 2 * node + 1;
int rnode = 2 * node + 2;
if(index >= low && index <= mid) {
updateTree(lnode, low, mid, index, val);
}else {
updateTree(rnode, mid + 1, high, index, val);
}
tree[node] = tree[lnode] + tree[rnode];
}區(qū)間查找
若現(xiàn)在查找數(shù)組arr區(qū)間和[3,6],如何利用線段樹呢?
在線段樹中,我們將它的和劃分為兩個(gè)區(qū)間[3]和[4,6],如圖中的黃色結(jié)點(diǎn)

下面來看看相關(guān)代碼如何實(shí)現(xiàn),給定一個(gè)查找區(qū)間[L, R],同樣使用變量low和high維護(hù)對(duì)數(shù)組arr的二分查找邊界
- 若當(dāng)前區(qū)間low > R 或者 high < L,說明已超出查找范圍,返回0
- 若[low, high]處于區(qū)間[L, R]內(nèi),返回當(dāng)前結(jié)點(diǎn)的值tree[node]
然后繼續(xù)在左右區(qū)間查找并保存左右區(qū)間的值sumLeft和sumRight,最后返回sumLeft + sumRight即可
//區(qū)間查找
public int queryTree(int L, int R) {
return this.queryTree(0, 0, arr.length - 1, L, R);
}
private int queryTree(int node, int low,
int high, int L, int R) {
if(low > R || high < L) {
return 0;
}else if(low >= L && high <= R) {
return tree[node];
}
int mid = low + (high - low) / 2;
int lnode = 2 * node + 1;
int rnode = 2 * node + 2;
int sumleft = queryTree(lnode, low, mid, L, R);
int sumRight = queryTree(rnode, mid + 1, high, L, R);
return sumleft + sumRight;
}完整代碼及測(cè)試
class SegmentTree{
private static final int[] tree = new int[1000];
int[] arr;
SegmentTree() {
}
SegmentTree(int[] arr) {
this.arr = arr;
}
//創(chuàng)建樹
public void buildTree() {
this.buildTree(0, 0, arr.length - 1);
}
private void buildTree(int node, int low, int high) {
if(low == high) {
tree[node] = arr[low];
return;
}
int mid = low + (high - low) / 2;
int lnode = 2 * node + 1;
int rnode = 2 * node + 2;
buildTree(lnode, low, mid);
buildTree(rnode, mid + 1, high);
tree[node] = tree[lnode] + tree[rnode];
}
//單點(diǎn)修改更新樹
public void updateTree(int index, int val) {
this.updateTree(0, 0, arr.length - 1, index, val);
}
private void updateTree(int node, int low, int high, int index, int val) {
if(low == high && low == index) {
arr[index] = val;
tree[node] = val;
return;
}
int mid = low + (high - low) / 2;
int lnode = 2 * node + 1;
int rnode = 2 * node + 2;
if(index >= low && index <= mid) {
updateTree(lnode, low, mid, index, val);
}else {
updateTree(rnode, mid + 1, high, index, val);
}
tree[node] = tree[lnode] + tree[rnode];
}
//區(qū)間查找
public int queryTree(int L, int R) {
return this.queryTree(0, 0, arr.length - 1, L, R);
}
private int queryTree(int node, int low, int high, int L, int R) {
if(low > R || high < L) {
return 0;
}else if(low >= L && high <= R) {
return tree[node];
}
int mid = low + (high - low) / 2;
int lnode = 2 * node + 1;
int rnode = 2 * node + 2;
int sumleft = queryTree(lnode, low, mid, L, R);
int sumRight = queryTree(rnode, mid + 1, high, L, R);
return sumleft + sumRight;
}
//輸出線段樹的值
public void printTree() {
int size = 15; //size值的大小由arr數(shù)組的大小而定
for (int i = 0; i < size; i++) {
System.out.print(tree[i] + " ");
}
System.out.println();
}
}
public class SegmentTreeTest {
public static void main(String[] args) {
int[] arr = {6, 4, 7, 5, 8, 3, 9};
SegmentTree st = new SegmentTree(arr);
//創(chuàng)建線段樹
st.buildTree();
st.printTree();
//>>>42 22 20 10 12 11 9 6 4 7 5 8 3 0 0
//查找區(qū)間[3, 6]
int sum = st.queryTree(3, 6);
System.out.println(sum);
//>>>25
//單點(diǎn)修改更新樹, 令arr[4] = 1
st.updateTree(4, 1);
st.printTree();
//>>>35 22 13 10 12 4 9 6 4 7 5 1 3 0 0
}
}樹結(jié)點(diǎn)版本:
此版本不使用數(shù)組保存,而是以結(jié)點(diǎn)來保存值,相應(yīng)代碼不難實(shí)現(xiàn),如下:
import java.util.ArrayDeque;
import java.util.Deque;
class SegNode{
int val;
SegNode lnode;
SegNode rnode;
SegNode(){}
SegNode(int val) {
this.val = val;
}
}
class SegTree{
SegNode root;
int[] arr;
SegTree() {}
SegTree(int[] arr) {
this.arr = arr;
this.bulidTree();
}
//創(chuàng)建樹
public void bulidTree() {
root = this.buildTree(0, arr.length - 1);
}
private SegNode buildTree(int low, int high) {
if(low == high) {
return new SegNode(arr[low]);
}
SegNode node = new SegNode();
int mid = low + (high - low) / 2;
node.lnode = buildTree(low, mid);
node.rnode = buildTree(mid + 1, high);
node.val = node.lnode.val + node.rnode.val;
return node;
}
//單點(diǎn)修改更新樹
public void updateTree(int index, int val) {
root = updateTree(root ,0, arr.length - 1, index, val);
}
private SegNode updateTree(SegNode node, int low, int high, int index, int val) {
if(low == high && low == index) {
arr[index] = val;
node.val = val;
return node;
}
int mid = low + (high - low) / 2;
if(index >= low && index <= mid) {
node.lnode = updateTree(node.lnode, low, mid, index, val);
}else {
node.rnode = updateTree(node.rnode, mid + 1, high, index, val);
}
node.val = node.lnode.val + node.rnode.val;
return node;
}
//查找區(qū)間
public int queryTree(int L, int R) {
return queryTree(root, 0, arr.length - 1, L, R);
}
private int queryTree(SegNode node, int low, int high, int L ,int R) {
if(low > R || high < L) {
return 0;
}else if(low >= L && high <= R) {
return node.val;
}
int mid = low + (high - low) / 2;
int sumLeft = queryTree(node.lnode, low, mid, L, R);
int sumRight = queryTree(node.rnode, mid + 1, high, L, R);
return sumLeft + sumRight;
}
//輸出樹(層次遍歷)
public void printTree() {
Deque<SegNode> queue = new ArrayDeque<SegNode>();
queue.offer(this.root);
while(!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
SegNode node = queue.poll();
System.out.print(node.val + " ");
if(node.lnode != null) queue.offer(node.lnode);
if(node.rnode != null) queue.offer(node.rnode);
}
}
}
}
public class SegmentTreeNodeTest {
public static void main(String[] args) {
int[] arr = {6, 4, 7, 5, 8, 3, 9};
//創(chuàng)建線段樹
SegTree st = new SegTree(arr);
st.printTree();
System.out.println("");
//>>>42 22 20 10 12 11 9 6 4 7 5 8 3
//查找區(qū)間[3, 6]
int sum = st.queryTree(3, 6);
System.out.println(sum);
//>>>25
//單點(diǎn)修改更新樹, 令arr[4] = 1
st.updateTree(4, 1);
st.printTree();
System.out.println("");
>>>35 22 13 10 12 4 9 6 4 7 5 1 3
}
}到此這篇關(guān)于C++高級(jí)數(shù)據(jù)結(jié)構(gòu)之線段樹的文章就介紹到這了,更多相關(guān)C++線段樹內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
利用Matlab復(fù)刻兩款粒子愛心動(dòng)畫效果
最近電視劇《點(diǎn)燃我,溫暖你》大火,蹭一下熱度,發(fā)一下MATLAB畫愛心的代碼,寫的比較隨意,大家可以自行調(diào)整粒子大小和顏色啥的2022-11-11
C++使用curl庫進(jìn)行http請(qǐng)求的方法詳解
這篇文章主要為大家詳細(xì)介紹了C++如何使用curl庫進(jìn)行http請(qǐng)求,并且實(shí)現(xiàn)獲取返回的頭信息的時(shí)間,也就是獲取后臺(tái)服務(wù)的當(dāng)前時(shí)間,感興趣的可以了解一下2023-07-07
Linux網(wǎng)絡(luò)編程之UDP Socket程序示例
這篇文章主要介紹了Linux網(wǎng)絡(luò)編程之UDP Socket程序示例,有助于讀者在實(shí)踐中掌握UDP協(xié)議的原理及應(yīng)用方法,需要的朋友可以參考下2014-08-08

