UEFI開發(fā)實戰(zhàn)SlimBootloader中調(diào)用FSP
綜述
FSP的全稱是Firmware Support Package。FSP有以下的特性:
- FSP提供了Intel重要組件(包括處理器、內(nèi)存控制器、芯片組等)的初始化;
- FSP被編譯成獨立的二進制,并可以集成到Bootloader中,這里說的Bootloader可以是Slim Bootloader,coreboot,UEFI等等;
- FSP的優(yōu)點有免費、方便集成、可減少開發(fā)時間,等等。
FSP中包含若干個部分,如下圖所示:
按作用來分它包含三個大的組件,分別是:
FSP-T:它主要用來初始化CACHE以及其它早期需要的初始化,對應(yīng)提供給外部的接口是TempRamInit()
;
FSP-M:它主要用來初始化內(nèi)存以及其它需要的初始化,對應(yīng)提供給外部的接口是FspMemoryInit()
和TempRamExit()
,前者用于內(nèi)存初始化,后者用于處理FSP-T中使用的CACHE內(nèi)容;
FPS-S:它主要是CPU和芯片組的初始化,對應(yīng)提供給外部的接口是FspSiliconInit()
和NotifyPhase()
,其中后者又會在不同的階段調(diào)用,包括PCIE掃描之后,ReadyToBoot時和EndOfBootServices的時候;
按功能來區(qū)分,每個組件都包含頭部、配置和API三個部分。頭部是固定的,配置用于一些可控的定制化,API就是功能代碼。Bootloader要操作FSP,就需要完成文件配置,接口調(diào)用等。
BootLoader調(diào)用FSP的整個流程如下圖所示:
Bootloader中需要有相應(yīng)的代碼做上述的操作,以Slim Bootloader為例,有一個IntelFsp2Pkg用來處理FSP相關(guān)的內(nèi)容。不過需要注意,這里的IntelFsp2Pkg并不提供FSP源代碼的,只是提供了EDK與FSP之間的中間層,真正的用來初始化Intel組件的FSP的代碼并沒有開源,所以這里也拿不到,不過可以拿到用于QEMU的FSP源代碼,后續(xù)使用的就是這個。
編譯
代碼主要是https://gitee.com/jiangwei0512/edk2-beni中的QemuFspPkg,它是用在QEMU上的FSP,它有源碼可以下載,而其它Intel的FSP基本是不開源的,沒有辦法下載到,所以這里只能用QEMU的FSP作為示例。
QEMU對應(yīng)的FSP通過BuildFsp.py進行編譯得到,該腳本執(zhí)行三個步驟:
- Prebuild
- Build
- PostBuild
PostBuild
Prebuild的流程如下:
1.構(gòu)建FspHeader.inf實際上就是創(chuàng)建FSP Header的頭部,它是固定的格式,位于QemuFspPkg\FspHeader\FspHeader.aslc,內(nèi)容如下:
TABLES mTable = { { FSP_INFO_HEADER_SIGNATURE, // UINT32 Signature (FSPH) sizeof(FSP_INFO_HEADER), // UINT32 HeaderLength; {0x00, 0x00}, // UINT8 Reserved1[2]; FixedPcdGet8(PcdFspHeaderSpecVersion), // UINT8 SpecVersion; FixedPcdGet8(PcdFspHeaderRevision), // UINT8 HeaderRevision; FixedPcdGet32(PcdFspImageRevision), // UINT32 ImageRevision; UINT64_TO_BYTE_ARRAY( FixedPcdGet64(PcdFspImageIdString)), // CHAR8 ImageId[8]; 0x12345678, // UINT32 ImageSize; 0x12345678, // UINT32 ImageBase; FixedPcdGet16(PcdFspImageAttributes), // UINT16 ImageAttribute; FixedPcdGet16(PcdFspComponentAttributes), // UINT16 ComponentAttribute; Bits[15:12] - 0001b: FSP-T, 0010b: FSP-M, 0011b: FSP-S 0x12345678, // UINT32 CfgRegionOffset; 0x12345678, // UINT32 CfgRegionSize; 0x00000000, // UINT32 Reserved2; 0x00000000, // UINT32 TempRamInitEntry; 0x00000000, // UINT32 Reserved3; 0x00000000, // UINT32 NotifyPhaseEntry; 0x00000000, // UINT32 FspMemoryInitEntry; 0x00000000, // UINT32 TempRamExitEntry; 0x00000000, // UINT32 FspSiliconInitEntry; }, { FSP_INFO_EXTENDED_HEADER_SIGNATURE, // UINT32 Signature (FSPE) sizeof(FSP_INFO_EXTENDED_HEADER), // UINT32 Length; FSPE_HEADER_REVISION_1, // UINT8 Revision; 0x00, // UINT8 Reserved; {FSP_PRODUCER_ID}, // CHAR8 FspProducerId[6]; 0x00000001, // UINT32 FspProducerRevision; 0x00000000, // UINT32 FspProducerDataSize; }, { FSP_FSPP_SIGNATURE, // UINT32 Signature (FSPP) sizeof(FSP_PATCH_TABLE), // UINT16 Length; FSPP_HEADER_REVISION_1, // UINT8 Revision; 0x00, // UINT8 Reserved; 1 // UINT32 PatchEntryNum; }, 0xFFFFFFFC // UINT32 Patch FVBASE at end of FV };
里面的某些數(shù)據(jù)在之后還會被修改,通過這個頭部就可以找到對應(yīng)API的位置,從而進行調(diào)用。
2.UPD txt文件是Build\QemuFspPkg\DEBUG_VS2019\FV(根據(jù)編譯工具的不同,對應(yīng)的目錄可能存在差異)下的如下內(nèi)容:
txt文件名對應(yīng)的是三個FSP組件的GUID(位于BuildFsp.py):
FspGuid = { 'FspTUpdGuid' : '34686CA3-34F9-4901-B82A-BA630F0714C6', 'FspMUpdGuid' : '39A250DB-E465-4DD1-A2AC-E2BD3C0E2385', 'FspSUpdGuid' : 'CAE3605B-5B34-4C85-B3D7-27D54273C40F' }
里面的內(nèi)容主要是一些PCD,以39A250DB-E465-4DD1-A2AC-E2BD3C0E2385.txt為例:
## @file # # THIS IS AUTO-GENERATED FILE BY BUILD TOOLS AND PLEASE DO NOT MAKE MODIFICATION. # # This file lists all VPD informations for a platform collected by build.exe. # # Copyright (c) 2022, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # gQemuFspPkgTokenSpaceGuid.Signature|DEFAULT|0x0000|8|0x4D5F4450554D4551 gQemuFspPkgTokenSpaceGuid.Revision|DEFAULT|0x0008|1|0x01 gQemuFspPkgTokenSpaceGuid.Reserved|DEFAULT|0x0009|23|{0x00} gQemuFspPkgTokenSpaceGuid.Revision|DEFAULT|0x0020|1|0x01 gQemuFspPkgTokenSpaceGuid.Reserved|DEFAULT|0x0021|3|{0x00} gQemuFspPkgTokenSpaceGuid.NvsBufferPtr|DEFAULT|0x0024|4|0x00000000 gQemuFspPkgTokenSpaceGuid.StackBase|DEFAULT|0x0028|4|0x00070000 gQemuFspPkgTokenSpaceGuid.StackSize|DEFAULT|0x002C|4|0x00010000 gQemuFspPkgTokenSpaceGuid.BootLoaderTolumSize|DEFAULT|0x0030|4|0x00000000 gPlatformFspPkgTokenSpaceGuid.Bootmode|DEFAULT|0x0034|4|0x00000000 gQemuFspPkgTokenSpaceGuid.Reserved1|DEFAULT|0x0038|8|{0x00} gQemuFspPkgTokenSpaceGuid.SerialDebugPortAddress|DEFAULT|0x0040|4|0x00000000 gQemuFspPkgTokenSpaceGuid.SerialDebugPortType|DEFAULT|0x0044|1|0x02 gQemuFspPkgTokenSpaceGuid.SerialDebugPortDevice|DEFAULT|0x0045|1|0x02 gQemuFspPkgTokenSpaceGuid.SerialDebugPortStrideSize|DEFAULT|0x0046|1|0x02 gQemuFspPkgTokenSpaceGuid.UnusedUpdSpace0|DEFAULT|0x0047|0x0031|{0} gQemuFspPkgTokenSpaceGuid.ReservedFspmUpd|DEFAULT|0x0078|4|{0x00} gQemuFspPkgTokenSpaceGuid.UnusedUpdSpace1|DEFAULT|0x007C|0x0002|{0} gQemuFspPkgTokenSpaceGuid.UpdTerminator|DEFAULT|0x007E|2|0x55AA
txt文件的來源是QemuFspPkg\QemuFspPkg.dsc,里面有這些PCD的初始化值,位于[PcdsDynamicVpd.Upd]
這個Section,其中的UnusedUpdSpaceX
也是在dsc文件中通過PCD指定的偏移來確定的。
3.UPD bin文件名也對應(yīng)到前面提到的GUID,以39A250DB-E465-4DD1-A2AC-E2BD3C0E2385.bin為例:
bin文件跟txt文件中的PCD值是一一對應(yīng)的。
4.UPD頭文件和bsf文件比較直觀,不做詳細說明,它們也是通過QemuFspPkg\QemuFspPkg.dsc創(chuàng)建的。UPD頭文件中還包含一個通用的頭部結(jié)構(gòu)體:
#pragma pack(1) /// /// FSP_UPD_HEADER Configuration. /// typedef struct { /// /// UPD Region Signature. This signature will be /// "XXXXXX_T" for FSP-T /// "XXXXXX_M" for FSP-M /// "XXXXXX_S" for FSP-S /// Where XXXXXX is an unique signature /// UINT64 Signature; /// /// Revision of the Data structure. /// For FSP spec 2.0/2.1 value is 1. /// For FSP spec 2.2 value is 2. /// UINT8 Revision; UINT8 Reserved[23]; } FSP_UPD_HEADER; #pragma pack()
每個平臺的UPD和bsf內(nèi)容都是不同的,甚至同一個平臺的不同版本也可能存在差異,不同的FSP-X對應(yīng)不同的UPD,分別是FSPT_UPD
、FSPM_UPD
和FSPS_UPD
,它們分別存放在FsptUpd.h、FspmUpd.h和FspsUpd.h中。以FSPM_UPD
結(jié)構(gòu)體為例:
/** Fsp M UPD Configuration **/ typedef struct { /** Offset 0x0000 **/ FSP_UPD_HEADER FspUpdHeader; /** Offset 0x0020 **/ FSPM_ARCH_UPD FspmArchUpd; /** Offset 0x0040 **/ FSP_M_CONFIG FspmConfig; /** Offset 0x007C **/ UINT8 UnusedUpdSpace1[2]; /** Offset 0x007E **/ UINT16 UpdTerminator; } FSPM_UPD;
其中的內(nèi)容跟前面的UPD txt中的PCD一一對應(yīng)。
上述的文件都在Build\QemuFspPkg\DEBUG_VS2019\FV(根據(jù)編譯工具的不同,對應(yīng)的目錄可能存在差異)創(chuàng)建,總的來說就是為了創(chuàng)建FSP的UPD配置文件和對應(yīng)用在代碼中的頭文件,頭文件會被拷貝到其它位置也是為了代碼能夠調(diào)用到。而UPD配置文件會通過二進制的方式包含到QemuFspPkg\QemuFspPkg.fdf,下面是一個示例:
# # Project specific configuration data files # !ifndef $(CFG_PREBUILD) FILE RAW = $(FSP_M_UPD_FFS_GUID) { SECTION RAW = $(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/$(FSP_M_UPD_TOOL_GUID).bin } !endif
Build
該過程僅僅是執(zhí)行build操作而已,對應(yīng)的代碼:
def Build (target, toolchain): cmd = '%s -p QemuFspPkg/QemuFspPkg.dsc -a IA32 -b %s -t %s -y Report%s.log' % ( 'build' if os.name == 'posix' else 'build.bat', target, toolchain, target) ret = subprocess.call(cmd.split(' ')) if ret: Fatal('Failed to do Build QEMU FSP!') print('End of Build...')
可以看到執(zhí)行對象是QemuFspPkg.dsc。完成這一步之后會生成FSP-M.Fv、FSP-S.Fv、FSP-T.Fv和QEMUFSP.fd。
到這里FSP二進制已經(jīng)生成,就是QEMUFSP.fd,但是它不能直接使用,還需要后續(xù)操作。
PostBuild
這一步主要是通過PatchFv.py來修改前文生成的QEMUFSP.fd,Patch前后:
這里具體Patch了哪部分內(nèi)容,需要先了解FSP二進制的組成部分,可以參考FSP二進制組成分析。這里Patch的大部分都是FSP Header中的內(nèi)容,對應(yīng)的默認初始化內(nèi)容就是前面提到的QemuFspPkg\FspHeader\FspHeader.aslc,其結(jié)構(gòu)體如下:
/// /// FSP Information Header as described in FSP v2.0 Spec section 5.1.1. /// typedef struct { /// /// Byte 0x00: Signature ('FSPH') for the FSP Information Header. /// UINT32 Signature; /// /// Byte 0x04: Length of the FSP Information Header. /// UINT32 HeaderLength; /// /// Byte 0x08: Reserved. /// UINT8 Reserved1[2]; /// /// Byte 0x0A: Indicates compliance with a revision of this specification in the BCD format. /// UINT8 SpecVersion; /// /// Byte 0x0B: Revision of the FSP Information Header. /// UINT8 HeaderRevision; /// /// Byte 0x0C: Revision of the FSP binary. /// UINT32 ImageRevision; /// /// Byte 0x10: Signature string that will help match the FSP Binary to a supported HW configuration. /// CHAR8 ImageId[8]; /// /// Byte 0x18: Size of the entire FSP binary. /// UINT32 ImageSize; /// /// Byte 0x1C: FSP binary preferred base address. /// UINT32 ImageBase; /// /// Byte 0x20: Attribute for the FSP binary. /// UINT16 ImageAttribute; /// /// Byte 0x22: Attributes of the FSP Component. /// UINT16 ComponentAttribute; /// /// Byte 0x24: Offset of the FSP configuration region. /// UINT32 CfgRegionOffset; /// /// Byte 0x28: Size of the FSP configuration region. /// UINT32 CfgRegionSize; /// /// Byte 0x2C: Reserved2. /// UINT32 Reserved2; /// /// Byte 0x30: The offset for the API to setup a temporary stack till the memory is initialized. /// UINT32 TempRamInitEntryOffset; /// /// Byte 0x34: Reserved3. /// UINT32 Reserved3; /// /// Byte 0x38: The offset for the API to inform the FSP about the different stages in the boot process. /// UINT32 NotifyPhaseEntryOffset; /// /// Byte 0x3C: The offset for the API to initialize the memory. /// UINT32 FspMemoryInitEntryOffset; /// /// Byte 0x40: The offset for the API to tear down temporary RAM. /// UINT32 TempRamExitEntryOffset; /// /// Byte 0x44: The offset for the API to initialize the CPU and chipset. /// UINT32 FspSiliconInitEntryOffset; /// /// Byte 0x48: Offset for the API for the optional Multi-Phase processor and chipset initialization. /// This value is only valid if FSP HeaderRevision is >= 5. /// If the value is set to 0x00000000, then this API is not available in this component. /// UINT32 FspMultiPhaseSiInitEntryOffset; } FSP_INFO_HEADER;
其中的ImageSize
、ImageBase
、ImageAttribute
、ComponentAttribute
、CfgRegionOffset
、CfgRegionSize
、TempRamInitEntryOffset
、FspMemoryInitEntryOffset
、TempRamExitEntryOffset
、FspSiliconInitEntryOffset
、NotifyPhaseEntryOffset
等都需要修改。
因為每個FSP-X都有一個FSP_INFO_HEADER
結(jié)構(gòu)體,所以前提提到的XXXOffset
會針對不同的FSP-X組件做對應(yīng)的修改,比如FSP-T只需要TempRamInitEntryOffset
。
除了FSP Header的Patch,這里還有一個點被Patch了:
它們對應(yīng)的是模塊的入口(IntelFsp2Pkg\FspSecCore\Ia32\FspHelper.nasm):
global ASM_PFX(FspInfoHeaderRelativeOff) ASM_PFX(FspInfoHeaderRelativeOff): DD 0x12345678 ; This value must be patched by the build script
從上面的代碼也可以看到這部分是需要Patch的。
FSP二進制組成分析
二進制的組成如下:
FSP每個組件都是一個FV,所以都有一個FV Header(EFI_FIRMWARE_VOLUME_HEADER
,位于MdePkg\Include\Pi\PiFirmwareVolume.h),大小是0x48個字節(jié),之后是一個FV Extended Header(EFI_FIRMWARE_VOLUME_EXT_HEADER
,位于MdePkg\Include\Pi\PiFirmwareVolume.h),之后才是FSP的內(nèi)容,如下圖所示:
FSP組件的第一個模塊是FSP Header,對應(yīng)二進制(Header的第一個成員是"FSPH",最后一個成員是0xFFFFFFFC)中:
這里可以看到里面有一些數(shù)據(jù)比較奇怪,都是0x12345678和0x00000000,這些都是占位符,并不是真正的有效數(shù)據(jù),是通過FspHeader.aslc生成的,在后期這些數(shù)據(jù)會被Patch成有效的值。
FSP組件的第二個模塊是UPD數(shù)據(jù),它在Prebuild中生成,對應(yīng)的數(shù)據(jù)(UPD數(shù)據(jù)的第一個成員是Signature(本例中是QEMUPD_T),最后一個成員是0x55AA):
再之后是通用的模塊。以QEMU中的FSP對應(yīng)的fdf文件為例:
# # FSP header # INF RuleOverride = FSPHEADER $(FSP_PACKAGE)/FspHeader/FspHeader.inf # # Project specific configuration data files # !ifndef $(CFG_PREBUILD) FILE RAW = $(FSP_T_UPD_FFS_GUID) { SECTION RAW = $(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/$(FSP_T_UPD_TOOL_GUID).bin } !endif INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreT.inf
使用
用于Slim Bootloader的FSP需要放到前者指定的目錄,對于QEMU來說對應(yīng)的是Silicon\QemuSocPkg\FspBin,同時FSP對應(yīng)的UPD頭文件也需要放到指定目錄。之后執(zhí)行Slim Bootloader的各個階段都會調(diào)用FSP的API接口,這里一一說明。
Stage1A
Stage1A階段會執(zhí)行FSP中的FspTempRamInit()
接口,由于是執(zhí)行階段的早期,這里只有匯編部分的代碼,具體的位置在BootloaderCorePkg\Stage1A\Ia32\SecEntry.nasm,對應(yīng)代碼:
global ASM_PFX(_ModuleEntryPoint) ASM_PFX(_ModuleEntryPoint): movd mm0, eax ; ; Read time stamp ; rdtsc mov esi, eax mov edi, edx ; ; Early board hooks ; mov esp, EarlyBoardInitRet jmp ASM_PFX(EarlyBoardInit) EarlyBoardInitRet: mov esp, FspTempRamInitRet jmp ASM_PFX(FspTempRamInit)
這里jmp
到BootloaderCorePkg\Library\FspApiLib\Ia32\FspTempRamInit.nasm:
global ASM_PFX(FspTempRamInit) ASM_PFX(FspTempRamInit): ; ; This hook is called to initialize temporay RAM ; ESI, EDI need to be preserved ; ESP contains return address ; ECX, EDX return the temprary RAM start and end ; ; ; Get FSP-T base in EAX ; mov ebp, esp mov eax, dword [ASM_PFX(PcdGet32(PcdFSPTBase))] ; ; Find the fsp info header ; Jump to TempRamInit API ; add eax, dword [eax + 094h + FSP_HEADER_TEMPRAMINIT_OFFSET] mov esp, TempRamInitStack jmp eax TempRamInitDone: mov esp, ebp jmp esp
FSP中的FspTempRamInit()
真正的入口是PcdGet32(PcdFSPTBase)+ 094h + FSP_HEADER_TEMPRAMINIT_OFFSET
,PcdFSPTBase
的值是:
gPlatformModuleTokenSpaceGuid.PcdFSPTBase | $(FSP_T_BASE)
FSP_T_BASE
表示的是FSP-T.bin的開始位置,094h
在前面也已經(jīng)介紹過,其前面的內(nèi)容是FV Header,該地址開始是FSP Header,而FSP_HEADER_TEMPRAMINIT_OFFSET
是FSP Header的偏移,該位置對應(yīng)成員是TempRamInitEntryOffset
,到這里就對應(yīng)起來了,FspTempRamInit()
即是該位置的值。
不過對于FSP_T_BASE
的值,它是FSP-T放到系統(tǒng)內(nèi)存中位置的地址,可以在BootloaderCorePkg\Platform.dsc中找到:
DEFINE FSP_T_BASE = 0xFFFF0000
這個值也跟SBL二進制產(chǎn)生關(guān)系:
Flash Map Information: +------------------------------------------------------------------------+ | FLASH MAP | | (RomSize = 0x00721000) | +------------------------------------------------------------------------+ | NAME | OFFSET (BASE) | SIZE | FLAGS | +----------+------------------------+------------+-----------------------+ +------------------------------------------------------------------------+ | TOP SWAP A | +------------------------------------------------------------------------+ | SG1A | 0x711000(0xFFFF0000) | 0x010000 | Uncompressed, TS_A | +------------------------------------------------------------------------+ | TOP SWAP B | +------------------------------------------------------------------------+ | SG1A | 0x701000(0xFFFE0000) | 0x010000 | Uncompressed, TS_B | +------------------------------------------------------------------------+ | REDUNDANT A | +------------------------------------------------------------------------+ | KEYH | 0x700000(0xFFFDF000) | 0x001000 | Uncompressed, R_A | | CNFG | 0x6ff000(0xFFFDE000) | 0x001000 | Uncompressed, R_A | | FWUP | 0x6e7000(0xFFFC6000) | 0x018000 | Compressed , R_A | | SG1B | 0x6b7000(0xFFF96000) | 0x030000 | Compressed , R_A | | SG02 | 0x69f000(0xFFF7E000) | 0x018000 | Compressed , R_A | | EMTY | 0x681000(0xFFF60000) | 0x01e000 | Uncompressed, R_A | +------------------------------------------------------------------------+ | REDUNDANT B | +------------------------------------------------------------------------+ | KEYH | 0x680000(0xFFF5F000) | 0x001000 | Uncompressed, R_B | | CNFG | 0x67f000(0xFFF5E000) | 0x001000 | Uncompressed, R_B | | FWUP | 0x667000(0xFFF46000) | 0x018000 | Compressed , R_B | | SG1B | 0x637000(0xFFF16000) | 0x030000 | Compressed , R_B | | SG02 | 0x61f000(0xFFEFE000) | 0x018000 | Compressed , R_B | | EMTY | 0x601000(0xFFEE0000) | 0x01e000 | Uncompressed, R_B | +------------------------------------------------------------------------+ | NON REDUNDANT | +------------------------------------------------------------------------+ | PTES | 0x600000(0xFFEDF000) | 0x001000 | Uncompressed, NR | | IPFW | 0x5f0000(0xFFECF000) | 0x010000 | Uncompressed, NR | | EPLD | 0x3e3000(0xFFCC2000) | 0x20d000 | Uncompressed, NR | | PYLD | 0x2e3000(0xFFBC2000) | 0x100000 | Compressed , NR | | VARS | 0x2e1000(0xFFBC0000) | 0x002000 | Uncompressed, NR | | EMTY | 0x001000(0xFF8E0000) | 0x2e0000 | Uncompressed, NR | +------------------------------------------------------------------------+ | NON VOLATILE | +------------------------------------------------------------------------+ | RSVD | 0x000000(0xFF8DF000) | 0x001000 | Uncompressed, NV | +----------+------------------------+------------+-----------------------+Flash Map Information: +------------------------------------------------------------------------+ | FLASH MAP | | (RomSize = 0x00721000) | +------------------------------------------------------------------------+ | NAME | OFFSET (BASE) | SIZE | FLAGS | +----------+------------------------+------------+-----------------------+ +------------------------------------------------------------------------+ | TOP SWAP A | +------------------------------------------------------------------------+ | SG1A | 0x711000(0xFFFF0000) | 0x010000 | Uncompressed, TS_A | +------------------------------------------------------------------------+ | TOP SWAP B | +------------------------------------------------------------------------+ | SG1A | 0x701000(0xFFFE0000) | 0x010000 | Uncompressed, TS_B | +------------------------------------------------------------------------+ | REDUNDANT A | +------------------------------------------------------------------------+ | KEYH | 0x700000(0xFFFDF000) | 0x001000 | Uncompressed, R_A | | CNFG | 0x6ff000(0xFFFDE000) | 0x001000 | Uncompressed, R_A | | FWUP | 0x6e7000(0xFFFC6000) | 0x018000 | Compressed , R_A | | SG1B | 0x6b7000(0xFFF96000) | 0x030000 | Compressed , R_A | | SG02 | 0x69f000(0xFFF7E000) | 0x018000 | Compressed , R_A | | EMTY | 0x681000(0xFFF60000) | 0x01e000 | Uncompressed, R_A | +------------------------------------------------------------------------+ | REDUNDANT B | +------------------------------------------------------------------------+ | KEYH | 0x680000(0xFFF5F000) | 0x001000 | Uncompressed, R_B | | CNFG | 0x67f000(0xFFF5E000) | 0x001000 | Uncompressed, R_B | | FWUP | 0x667000(0xFFF46000) | 0x018000 | Compressed , R_B | | SG1B | 0x637000(0xFFF16000) | 0x030000 | Compressed , R_B | | SG02 | 0x61f000(0xFFEFE000) | 0x018000 | Compressed , R_B | | EMTY | 0x601000(0xFFEE0000) | 0x01e000 | Uncompressed, R_B | +------------------------------------------------------------------------+ | NON REDUNDANT | +------------------------------------------------------------------------+ | PTES | 0x600000(0xFFEDF000) | 0x001000 | Uncompressed, NR | | IPFW | 0x5f0000(0xFFECF000) | 0x010000 | Uncompressed, NR | | EPLD | 0x3e3000(0xFFCC2000) | 0x20d000 | Uncompressed, NR | | PYLD | 0x2e3000(0xFFBC2000) | 0x100000 | Compressed , NR | | VARS | 0x2e1000(0xFFBC0000) | 0x002000 | Uncompressed, NR | | EMTY | 0x001000(0xFF8E0000) | 0x2e0000 | Uncompressed, NR | +------------------------------------------------------------------------+ | NON VOLATILE | +------------------------------------------------------------------------+ | RSVD | 0x000000(0xFF8DF000) | 0x001000 | Uncompressed, NV | +----------+------------------------+------------+-----------------------+
由于SBL會放到4G以下的空間,而FSP-T.Fv放在了SG1A中,大小是0x10000,所以位置就是0xFFFF0000。通過下述命令能夠更清楚的看出來:
F:\Gitee\sbl>BootloaderCorePkg\Tools\IfwiUtility.py view -i Outputs\qemu\SlimBootloader.bin IFWI [O:0x00000000 L:0x00721000] BIOS [O:0x00000000 L:0x00721000] NVS [O:0x00000000 L:0x00001000] RSVD [O:0x00000000 L:0x00001000] NRD [O:0x00001000 L:0x00600000] EMTY [O:0x00001000 L:0x002E0000] VARS [O:0x002E1000 L:0x00002000] PYLD [O:0x002E3000 L:0x00100000] EPLD [O:0x003E3000 L:0x0020D000] IPFW [O:0x005F0000 L:0x00010000] PTES [O:0x00600000 L:0x00001000] RD1 [O:0x00601000 L:0x00080000] EMTY [O:0x00601000 L:0x0001E000] SG02 [O:0x0061F000 L:0x00018000] SG1B [O:0x00637000 L:0x00030000] FWUP [O:0x00667000 L:0x00018000] CNFG [O:0x0067F000 L:0x00001000] KEYH [O:0x00680000 L:0x00001000] RD0 [O:0x00681000 L:0x00080000] EMTY [O:0x00681000 L:0x0001E000] SG02 [O:0x0069F000 L:0x00018000] SG1B [O:0x006B7000 L:0x00030000] FWUP [O:0x006E7000 L:0x00018000] CNFG [O:0x006FF000 L:0x00001000] KEYH [O:0x00700000 L:0x00001000] TS1 [O:0x00701000 L:0x00010000] SG1A [O:0x00701000 L:0x00010000] TS0 [O:0x00711000 L:0x00010000] SG1A [O:0x00711000 L:0x00010000] ---- 這里的最后就是0x100000000的位置
SBL二進制和FSP-T.bin的對應(yīng)關(guān)系:
最終可以查看到PcdGet32(PcdFSPTBase)+ 094h + FSP_HEADER_TEMPRAMINIT_OFFSET
處的值是0x473(位于0x7110C4),這也跟編譯FSP時的Patch對應(yīng):
Patched offset 0x000370C4:[00000000] with value 0x00000473 # TempRamInit API
從上圖可以看到該位置的值是EB 0B 90 90 90
等等,可以確定這些就是代碼了,但是它對應(yīng)到的是哪個模塊呢?其實可以從QemuFspPkg\QemuFspPkg.fdf中找到答案:
[FV.FSP-T] BlockSize = $(FLASH_BLOCK_SIZE) FvAlignment = 16 ERASE_POLARITY = 1 MEMORY_MAPPED = TRUE STICKY_WRITE = TRUE LOCK_CAP = TRUE LOCK_STATUS = TRUE WRITE_DISABLED_CAP = TRUE WRITE_ENABLED_CAP = TRUE WRITE_STATUS = TRUE WRITE_LOCK_CAP = TRUE WRITE_LOCK_STATUS = TRUE READ_DISABLED_CAP = TRUE READ_ENABLED_CAP = TRUE READ_STATUS = TRUE READ_LOCK_CAP = TRUE READ_LOCK_STATUS = TRUE FvNameGuid = 52F1AFB6-78A6-448f-8274-F370549AC5D0 # # FSP header # INF RuleOverride = FSPHEADER $(FSP_PACKAGE)/FspHeader/FspHeader.inf # # Project specific configuration data files # !ifndef $(CFG_PREBUILD) FILE RAW = $(FSP_T_UPD_FFS_GUID) { SECTION RAW = $(OUTPUT_DIRECTORY)/$(TARGET)_$(TOOL_CHAIN_TAG)/FV/$(FSP_T_UPD_TOOL_GUID).bin } !endif INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreT.inf
根據(jù)前面的介紹,F(xiàn)spHeader.inf是FSP Header,$(FSP_T_UPD_TOOL_GUID).bin是UPD配置文件,那么FspSecCoreT.inf就應(yīng)該是包含FspTempRamInit()
函數(shù)代碼的模塊了。
這里直接找對應(yīng)的模塊,它被編譯成一個二進制FspSecCoreT.efi,efi文件符合的是《Microsoft Portable Executable and Common Object File Format Specification》(后稱Spec)規(guī)范。文檔可以點擊下載。在這個文檔中描述了efi二進制頭部的格式如下:
通過它可以找到真正的代碼入口位置,不過也不需要一一計算,可以通過對應(yīng)的map文件(這里就是Build\QemuFspPkg\DEBUG_VS2019\IA32\IntelFsp2Pkg\FspSecCore\FspSecCoreT\DEBUG\FspSecCoreT.map)找到需要的入口:
Address Publics by Value Rva+Base Lib:Object 0001:000001fb _TempRamInitApi 0000041b FspSecCoreT:FspApiEntryT.obj
可以看到地址是0000041b
,查看FspSecCoreT.efi二進制:
可以看到數(shù)據(jù)已經(jīng)對應(yīng)上了。再進一步分析這些數(shù)據(jù)的話,會發(fā)現(xiàn)EB實際上是一個跳轉(zhuǎn)指令(注意之類是16位的代碼,所以是近跳轉(zhuǎn)),可以參考《64-ia-32-architectures-software-developer-instruction-set-reference-manual.pdf》中的“JMP—Jump”章節(jié):
cb
表示的是跳轉(zhuǎn)偏移,這里的值是0xB,對應(yīng)的代碼在IntelFsp2Pkg\FspSecCore\Ia32\SaveRestoreSseNasm.inc:
%macro ENABLE_SSE 0 ; ; Initialize floating point units ; jmp NextAddress align 4 ; 需要4字節(jié)對齊,所以后面補充了90,表示的是nop指令,總共3個字節(jié) ; ; Float control word initial value: ; all exceptions masked, double-precision, round-to-nearest ; FpuControlWord DW 027Fh ; 占據(jù)2個字節(jié) ; ; Multimedia-extensions control word: ; all exceptions masked, round-to-nearest, flush to zero for masked underflow ; MmxControlWord DD 01F80h ; 占據(jù)2個字節(jié) SseError: ; ; Processor has to support SSE ; jmp SseError ; 對應(yīng)的機器碼是EB FE,因為是循環(huán)執(zhí)行,相當(dāng)于跳轉(zhuǎn)回去執(zhí)行同一條命令,而該命令是2個字節(jié),所以就是-2,等于0xFE NextAddress: ; 理論上到這里只有9個字節(jié),但是代碼中跳轉(zhuǎn)了0xB,也就是有11個字節(jié),多出來的2個字節(jié)用0補上了,應(yīng)該也是為了4字節(jié)對齊
到這里整個調(diào)用流程就完整了。
Stage1B
本階段SBL會調(diào)用FSP中的FspMemoryInit()
,對應(yīng)的代碼在BootloaderCorePkg\Stage1B\Stage1B.c:
// Initialize memory HobList = NULL; DEBUG ((DEBUG_INIT, "Memory Init\n")); AddMeasurePoint (0x2020); Status = CallFspMemoryInit (PCD_GET32_WITH_ADJUST (PcdFSPMBase), &HobList); AddMeasurePoint (0x2030);
CallFspMemoryInit()
執(zhí)行的最重要的代碼如下:
FspMemoryInit = (FSP_MEMORY_INIT)(UINTN)(FspHeader->ImageBase + \ FspHeader->FspMemoryInitEntryOffset); Status = FspMemoryInit (&FspmUpd, HobList);
從這里可以看到這就是一個跳轉(zhuǎn)的動作,而跳轉(zhuǎn)的位置就是FSP_INFO_HEADER
中的成員FspMemoryInitEntryOffset
,這個在前面已經(jīng)說明過。
FSP中對應(yīng)的模塊主要有:
# # It is important to keep the proper order for these PEIMs # for this implementation # INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreM.inf INF MdeModulePkg/Core/Pei/PeiMain.inf INF MdeModulePkg/Universal/PCD/Pei/Pcd.inf # # Project specific PEIMs # INF $(FSP_PACKAGE)/FspmInit/FspmInit.inf
FspSecCoreM.inf可以認為是一個偽SEC代碼,主要的目的就是為了進入之后的PEI階段,即PeiMain.inf,它跟UEFI中的PEI沒有本質(zhì)的區(qū)別,不過能夠Dispatch的模塊僅有后面的兩個,Pcd.inf只是功能模塊在這里并不重要,而FspmInit.inf就是內(nèi)存初始化的主體。下面會簡單介紹其中的主要模塊。
FspSecCoreM.inf對應(yīng)的入口:
;---------------------------------------------------------------------------- ; FspMemoryInit API ; ; This FSP API is called after TempRamInit and initializes the memory. ; ;---------------------------------------------------------------------------- global ASM_PFX(FspMemoryInitApi) ASM_PFX(FspMemoryInitApi): mov eax, 3 ; FSP_API_INDEX.FspMemoryInitApiIndex jmp ASM_PFX(FspApiCommon)
對應(yīng)的調(diào)用路徑:
調(diào)用路徑中大部分是匯編,不過有幾個是C函數(shù),因為在Stage1A中已經(jīng)可以使用C函數(shù)了。SecStartup()
位于UefiCpuPkg\SecCore\SecMain.c,是SEC的C函數(shù)入口,之后轉(zhuǎn)入執(zhí)行PeiMain,這個PEI階段Dispatch的模塊主要是FspmInit.inf,它完成真正的內(nèi)存初始化操作。
FspmInit.inf模塊中完成內(nèi)存初始化的代碼這里不多做介紹,因為真正的Intel平臺中的代碼要復(fù)雜的多,這里只是虛擬機的內(nèi)存初始化,本身的意義不大,不過需要注意的是其中的某些代碼:
EFI_PEI_NOTIFY_DESCRIPTOR mMemoryDiscoveredNotifyList = { (EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiPeiMemoryDiscoveredPpiGuid, MemoryDiscoveredPpiNotifyCallback }; // // Now that all of the pre-permanent memory activities have // been taken care of, post a call-back for the permanent-memory // resident services, such as HOB construction. // PEI Core will switch stack after this PEIM exit. After that the MTRR // can be set. // Status = PeiServicesNotifyPpi (&mMemoryDiscoveredNotifyList);
這個操作在gEfiPeiMemoryDiscoveredPpiGuid
被安裝后被調(diào)用,而安裝動作在PeiCore()
中完成:
// // Alert any listeners that there is permanent memory available // PERF_INMODULE_BEGIN ("DisMem"); Status = PeiServicesInstallPpi (&mMemoryDiscoveredPpi);
gEfiPeiMemoryDiscoveredPpiGuid
對應(yīng)的回調(diào)函數(shù)有很多個,這里關(guān)注的是FspmInit.inf模塊中的。原因是這里有兩層的跳轉(zhuǎn),其中有如下的代碼:
EFI_STATUS EFIAPI MemoryDiscoveredPpiNotifyCallback ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor, IN VOID *Ppi ) { // // Migrate FSP-M UPD data before destroying CAR // MigrateFspmUpdData (); // // Give control back after MemoryInitApi // FspMemoryInitDone (HobListPtr); if (GetFspApiCallingIndex() == TempRamExitApiIndex) { DEBUG ((DEBUG_INFO | DEBUG_INIT, "Memory Discovered Notify completed ...\n")); // // Give control back after TempRamExitApi // FspTempRamExitDone (); } }
這里的FspMemoryInitDone()
執(zhí)行之后,CPU又會跳轉(zhuǎn)到SBL代碼中去執(zhí)行,直到SBL中再次調(diào)用FSP中的TempRamExit()
這個API,對應(yīng)SBL中的代碼:
Status = CallFspTempRamExit (PCD_GET32_WITH_ADJUST (PcdFSPMBase), NULL);
然后會再次開始執(zhí)行FspMemoryInitDone()
之后的代碼,直到FspTempRamExitDone()
退出。
Stage1B中調(diào)用的兩個API到這里就都介紹完畢了。
Stage2
本階段SBL會調(diào)用FSP中FspSiliconInit()
,對應(yīng)的代碼在BootloaderCorePkg\Stage2\Stage2.c:
DEBUG ((DEBUG_INIT, "Silicon Init\n")); AddMeasurePoint (0x3020); Status = CallFspSiliconInit (); AddMeasurePoint (0x3030); FspResetHandler (Status); ASSERT_EFI_ERROR (Status);
跟Stage1B中調(diào)用FSP中的API一樣,這里也是一個跳轉(zhuǎn):
FspSiliconInit = (FSP_SILICON_INIT)(UINTN)(FspHeader->ImageBase + \ FspHeader->FspSiliconInitEntryOffset) Status = FspSiliconInit (FspsUpdptr);
對應(yīng)的FSP-S的執(zhí)行過程跟FSP-M差不多,也有一個偽SEC模塊,對應(yīng)的模塊如下所示:
# # It is important to keep the proper order for these PEIMs # for this implementation # INF RuleOverride = RELOC IntelFsp2Pkg/FspSecCore/FspSecCoreS.inf INF MdeModulePkg/Core/DxeIplPeim/DxeIpl.inf INF RuleOverride = PE32 $(FSP_PACKAGE)/FspsInit/FspsInit.inf INF RuleOverride = PE32 $(FSP_PACKAGE)/QemuVideo/QemuVideo.inf INF RuleOverride = PE32 IntelFsp2Pkg/FspNotifyPhase/FspNotifyPhasePeim.inf
不過實際上,當(dāng)調(diào)用FspSiliconInit()
之后,代碼還是從Stage1B中的FSP退出的位置開始執(zhí)行的,即QemuFspPkg\FspmInit\FspmInit.c中的FspTempRamExitDone ()
之后開始執(zhí)行代碼,其對應(yīng)的函數(shù)是ReportAndInstallNewFv ()
,也就是說,Stage2調(diào)用FSP-S之后,還是從PeiMain開始執(zhí)行,當(dāng)前述的函數(shù)安裝了FV之后,就又開始Dispatch,完成上述模塊的執(zhí)行。
Stage2還是調(diào)用FSP中的NotifyPhase()
,對應(yīng)SBL中的代碼:
EFI_STATUS EFIAPI CallFspNotifyPhase ( FSP_INIT_PHASE Phase ) { FSP_INFO_HEADER *FspHeader; FSP_NOTIFY_PHASE NotifyPhase; NOTIFY_PHASE_PARAMS NotifyPhaseParams; EFI_STATUS Status; FspHeader = (FSP_INFO_HEADER *)(UINTN)(PcdGet32 (PcdFSPSBase) + FSP_INFO_HEADER_OFF); ASSERT (FspHeader->Signature == FSP_INFO_HEADER_SIGNATURE); ASSERT (FspHeader->ImageBase == PcdGet32 (PcdFSPSBase)); if (FspHeader->NotifyPhaseEntryOffset == 0) { return EFI_UNSUPPORTED; } NotifyPhase = (FSP_NOTIFY_PHASE)(UINTN)(FspHeader->ImageBase + FspHeader->NotifyPhaseEntryOffset); NotifyPhaseParams.Phase = Phase; DEBUG ((DEBUG_INFO, "Call FspNotifyPhase(%02X) ... ", Phase)); if (IS_X64) { Status = Execute32BitCode ((UINTN)NotifyPhase, (UINTN)&NotifyPhaseParams, (UINTN)0, FALSE); Status = (UINTN)LShiftU64 (Status & ((UINTN)MAX_INT32 + 1), 32) | (Status & MAX_INT32); } else { Status = NotifyPhase (&NotifyPhaseParams); } DEBUG ((DEBUG_INFO, "%r\n", Status)); return Status; }
可以看到也只是一個簡單的跳轉(zhuǎn)。這里的參數(shù)FSP_INIT_PHASE
對應(yīng)的值:
/// /// Enumeration of FSP_INIT_PHASE for NOTIFY_PHASE. /// typedef enum { /// /// This stage is notified when the bootloader completes the /// PCI enumeration and the resource allocation for the /// PCI devices is complete. /// EnumInitPhaseAfterPciEnumeration = 0x20, /// /// This stage is notified just before the bootloader hand-off /// to the OS loader. /// EnumInitPhaseReadyToBoot = 0x40, /// /// This stage is notified just before the firmware/Preboot /// environment transfers management of all system resources /// to the OS or next level execution environment. /// EnumInitPhaseEndOfFirmware = 0xF0 } FSP_INIT_PHASE;
標明了調(diào)用NotifyPhase()
的具體位置。
以上就是UEFI開發(fā)實戰(zhàn)SlimBootloader中調(diào)用FSP的詳細內(nèi)容,更多關(guān)于UEFI開發(fā)SlimBootloader調(diào)用FSP的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
UEFI開發(fā)實戰(zhàn)用戶交互界面使用說明UNI文件
這篇文章主要為大家介紹了UEFI開發(fā)實戰(zhàn)用戶交互界面使用說明UNI文件,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2022-06-06匯編語言系列之匯編實現(xiàn)簡單數(shù)學(xué)運算
這篇文章主要介紹了匯編語言系列之匯編實現(xiàn)簡單數(shù)學(xué)運算的思路詳解,本文給大家列出了兩種算術(shù)運算的代碼,設(shè)計思路給大家介紹的非常詳細,對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2021-11-11用匯編語言實現(xiàn)從1加到100的方法(1+2+...+100)
這篇文章主要介紹了用匯編語言實現(xiàn)從1加到100的方法(1+2+...+100),文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-01-01