echarts交互組件與數(shù)據(jù)的視覺映射
交互組件
ECharts 提供了很多交互組件:例組件 legend、標題組件 title、視覺映射組件 visualMap、數(shù)據(jù)區(qū)域縮放組件 dataZoom、時間線組件 timeline。
接下來的內(nèi)容我們將介紹如何使用數(shù)據(jù)區(qū)域縮放組件 dataZoom。
dataZoom
dataZoom 組件可以實現(xiàn)通過鼠標滾輪滾動,放大縮小圖表的功能。
默認情況下 dataZoom 控制 x 軸,即對 x 軸進行數(shù)據(jù)窗口縮放和數(shù)據(jù)窗口平移操作。
option = { xAxis: { type: 'value' }, yAxis: { type: 'value' }, dataZoom: [ { // 這個dataZoom組件,默認控制x軸。 type: 'slider', // 這個 dataZoom 組件是 slider 型 dataZoom 組件 start: 10, // 左邊在 10% 的位置。 end: 60 // 右邊在 60% 的位置。 } ], series: [ { type: 'scatter', // 這是個『散點圖』 itemStyle: { opacity: 0.8 }, symbolSize: function (val) { return val[2] * 40; }, data: [["14.616","7.241","0.896"],["3.958","5.701","0.955"],["2.768","8.971","0.669"],["9.051","9.710","0.171"],["14.046","4.182","0.536"],["12.295","1.429","0.962"],["4.417","8.167","0.113"],["0.492","4.771","0.785"],["7.632","2.605","0.645"],["14.242","5.042","0.368"]] } ] }
上面的實例只能拖動 dataZoom 組件來縮小或放大圖表。如果想在坐標系內(nèi)進行拖動,以及用鼠標滾輪(或移動觸屏上的兩指滑動)進行縮放,那么需要 再再加上一個 inside 型的 dataZoom 組件。
在以上實例基礎上我們再增加 type: 'inside' 的配置信息:
option = { ..., dataZoom: [ { // 這個dataZoom組件,默認控制x軸。 type: 'slider', // 這個 dataZoom 組件是 slider 型 dataZoom 組件 start: 10, // 左邊在 10% 的位置。 end: 60 // 右邊在 60% 的位置。 }, { // 這個dataZoom組件,也控制x軸。 type: 'inside', // 這個 dataZoom 組件是 inside 型 dataZoom 組件 start: 10, // 左邊在 10% 的位置。 end: 60 // 右邊在 60% 的位置。 } ], ... }
當然我們可以通過 dataZoom.xAxisIndex 或 dataZoom.yAxisIndex 來指定 dataZoom 控制哪個或哪些數(shù)軸。
var data1 = []; var data2 = []; var data3 = []; var random = function (max) { return (Math.random() * max).toFixed(3); }; for (var i = 0; i < 500; i++) { data1.push([random(15), random(10), random(1)]); data2.push([random(10), random(10), random(1)]); data3.push([random(15), random(10), random(1)]); } option = { animation: false, legend: { data: ['scatter', 'scatter2', 'scatter3'] }, tooltip: { }, xAxis: { type: 'value', min: 'dataMin', max: 'dataMax', splitLine: { show: true } }, yAxis: { type: 'value', min: 'dataMin', max: 'dataMax', splitLine: { show: true } }, dataZoom: [ { type: 'slider', show: true, xAxisIndex: [0], start: 1, end: 35 }, { type: 'slider', show: true, yAxisIndex: [0], left: '93%', start: 29, end: 36 }, { type: 'inside', xAxisIndex: [0], start: 1, end: 35 }, { type: 'inside', yAxisIndex: [0], start: 29, end: 36 } ], series: [ { name: 'scatter', type: 'scatter', itemStyle: { normal: { opacity: 0.8 } }, symbolSize: function (val) { return val[2] * 40; }, data: data1 }, { name: 'scatter2', type: 'scatter', itemStyle: { normal: { opacity: 0.8 } }, symbolSize: function (val) { return val[2] * 40; }, data: data2 }, { name: 'scatter3', type: 'scatter', itemStyle: { normal: { opacity: 0.8, } }, symbolSize: function (val) { return val[2] * 40; }, data: data3 } ] }
數(shù)據(jù)的視覺映射
數(shù)據(jù)可視化簡單來講就是將數(shù)據(jù)用圖表的形式來展示,專業(yè)的表達方式就是數(shù)據(jù)到視覺元素的映射過程。
ECharts 的每種圖表本身就內(nèi)置了這種映射過程,我們之前學習到的柱形圖就是將數(shù)據(jù)映射到長度。
此外,ECharts 還提供了 visualMap 組件 來提供通用的視覺映射。visualMap 組件中可以使用的視覺元素有:
- 圖形類別(symbol)
- 圖形大小(symbolSize)
- 顏色(color)
- 透明度(opacity)
- 顏色透明度(colorAlpha)
- 顏色明暗度(colorLightness)
- 顏色飽和度(colorSaturation)
- 色調(colorHue)
一、數(shù)據(jù)和維度
ECharts 中的數(shù)據(jù),一般存放于 series.data 中。
不同的圖表類型,數(shù)據(jù)格式有所不一樣,但是他們的共同特點就都是數(shù)據(jù)項(dataItem) 的集合。每個數(shù)據(jù)項含有 數(shù)據(jù)值(value) 和其他信息(可選)。每個數(shù)據(jù)值,可以是單一的數(shù)值(一維)或者一個數(shù)組(多維)。
series.data 最常見的形式 是線性表,即一個普通數(shù)組:
series: { data: [ { // 這里每一個項就是數(shù)據(jù)項(dataItem) value: 2323, // 這是數(shù)據(jù)項的數(shù)據(jù)值(value) itemStyle: {...} }, 1212, // 也可以直接是 dataItem 的 value,這更常見。 2323, // 每個 value 都是『一維』的。 4343, 3434 ] } series: { data: [ { // 這里每一個項就是數(shù)據(jù)項(dataItem) value: [3434, 129, '圣馬力諾'], // 這是數(shù)據(jù)項的數(shù)據(jù)值(value) itemStyle: {...} }, [1212, 5454, '梵蒂岡'], // 也可以直接是 dataItem 的 value,這更常見。 [2323, 3223, '瑙魯'], // 每個 value 都是『三維』的,每列是一個維度。 [4343, 23, '圖瓦盧'] // 假如是『氣泡圖』,常見第一維度映射到x軸, // 第二維度映射到y(tǒng)軸, // 第三維度映射到氣泡半徑(symbolSize) ] }
在圖表中,往往默認把 value 的前一兩個維度進行映射,比如取第一個維度映射到x軸,取第二個維度映射到y(tǒng)軸。如果想要把更多的維度展現(xiàn)出來,可以借助 visualMap 。
二、visualMap 組件
visualMap 組件定義了把數(shù)據(jù)的指定維度映射到對應的視覺元素上。
visualMap 組件可以定義多個,從而可以同時對數(shù)據(jù)中的多個維度進行視覺映射。
visualMap 組件可以定義為 分段型(visualMapPiecewise) 或 連續(xù)型(visualMapContinuous),通過 type 來區(qū)分。例如:
option = { visualMap: [ { // 第一個 visualMap 組件 type: 'continuous', // 定義為連續(xù)型 visualMap ... }, { // 第二個 visualMap 組件 type: 'piecewise', // 定義為分段型 visualMap ... } ], ... };
分段型視覺映射組件,有三種模式:
- 連續(xù)型數(shù)據(jù)平均分段: 依據(jù) visualMap-piecewise.splitNumber 來自動平均分割成若干塊。
- 連續(xù)型數(shù)據(jù)自定義分段: 依據(jù) visualMap-piecewise.pieces 來定義每塊范圍。
- 離散數(shù)據(jù)根據(jù)類別分段: 類別定義在 visualMap-piecewise.categories 中。
分段型視覺映射組件,展現(xiàn)形式如下圖:
實例
<!DOCTYPE html> <html style="height: 100%"> <head> <meta charset="utf-8"> </head> <body style="height: 100%; margin: 0"> <div id="container" style="height: 100%"></div> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/echarts.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts-gl/dist/echarts-gl.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts-stat/dist/ecStat.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/extension/dataTool.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/map/js/china.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/map/js/world.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/extension/bmap.min.js"></script> <script type="text/javascript"> var dom = document.getElementById("container"); var myChart = echarts.init(dom); var app = {}; option = null; var geoCoordMap = { "海門":[121.15,31.89], "鄂爾多斯":[109.781327,39.608266], "招遠":[120.38,37.35], "舟山":[122.207216,29.985295], "齊齊哈爾":[123.97,47.33], "鹽城":[120.13,33.38], "赤峰":[118.87,42.28], "青島":[120.33,36.07], "乳山":[121.52,36.89], "金昌":[102.188043,38.520089], "泉州":[118.58,24.93], "萊西":[120.53,36.86], "日照":[119.46,35.42], "膠南":[119.97,35.88], "南通":[121.05,32.08], "拉薩":[91.11,29.97], "云浮":[112.02,22.93], "梅州":[116.1,24.55], "文登":[122.05,37.2], "上海":[121.48,31.22], "攀枝花":[101.718637,26.582347], "威海":[122.1,37.5], "承德":[117.93,40.97], "廈門":[118.1,24.46], "汕尾":[115.375279,22.786211], "潮州":[116.63,23.68], "丹東":[124.37,40.13], "太倉":[121.1,31.45], "曲靖":[103.79,25.51], "煙臺":[121.39,37.52], "福州":[119.3,26.08], "瓦房店":[121.979603,39.627114], "即墨":[120.45,36.38], "撫順":[123.97,41.97], "玉溪":[102.52,24.35], "張家口":[114.87,40.82], "陽泉":[113.57,37.85], "萊州":[119.942327,37.177017], "湖州":[120.1,30.86], "汕頭":[116.69,23.39], "昆山":[120.95,31.39], "寧波":[121.56,29.86], "湛江":[110.359377,21.270708], "揭陽":[116.35,23.55], "榮成":[122.41,37.16], "連云港":[119.16,34.59], "葫蘆島":[120.836932,40.711052], "常熟":[120.74,31.64], "東莞":[113.75,23.04], "河源":[114.68,23.73], "淮安":[119.15,33.5], "泰州":[119.9,32.49], "南寧":[108.33,22.84], "營口":[122.18,40.65], "惠州":[114.4,23.09], "江陰":[120.26,31.91], "蓬萊":[120.75,37.8], "韶關":[113.62,24.84], "嘉峪關":[98.289152,39.77313], "廣州":[113.23,23.16], "延安":[109.47,36.6], "太原":[112.53,37.87], "清遠":[113.01,23.7], "中山":[113.38,22.52], "昆明":[102.73,25.04], "壽光":[118.73,36.86], "盤錦":[122.070714,41.119997], "長治":[113.08,36.18], "深圳":[114.07,22.62], "珠海":[113.52,22.3], "宿遷":[118.3,33.96], "咸陽":[108.72,34.36], "銅川":[109.11,35.09], "平度":[119.97,36.77], "佛山":[113.11,23.05], "???:[110.35,20.02], "江門":[113.06,22.61], "章丘":[117.53,36.72], "肇慶":[112.44,23.05], "大連":[121.62,38.92], "臨汾":[111.5,36.08], "吳江":[120.63,31.16], "石嘴山":[106.39,39.04], "沈陽":[123.38,41.8], "蘇州":[120.62,31.32], "茂名":[110.88,21.68], "嘉興":[120.76,30.77], "長春":[125.35,43.88], "膠州":[120.03336,36.264622], "銀川":[106.27,38.47], "張家港":[120.555821,31.875428], "三門峽":[111.19,34.76], "錦州":[121.15,41.13], "南昌":[115.89,28.68], "柳州":[109.4,24.33], "三亞":[109.511909,18.252847], "自貢":[104.778442,29.33903], "吉林":[126.57,43.87], "陽江":[111.95,21.85], "瀘州":[105.39,28.91], "西寧":[101.74,36.56], "宜賓":[104.56,29.77], "呼和浩特":[111.65,40.82], "成都":[104.06,30.67], "大同":[113.3,40.12], "鎮(zhèn)江":[119.44,32.2], "桂林":[110.28,25.29], "張家界":[110.479191,29.117096], "宜興":[119.82,31.36], "北海":[109.12,21.49], "西安":[108.95,34.27], "金壇":[119.56,31.74], "東營":[118.49,37.46], "牡丹江":[129.58,44.6], "遵義":[106.9,27.7], "紹興":[120.58,30.01], "揚州":[119.42,32.39], "常州":[119.95,31.79], "濰坊":[119.1,36.62], "重慶":[106.54,29.59], "臺州":[121.420757,28.656386], "南京":[118.78,32.04], "濱州":[118.03,37.36], "貴陽":[106.71,26.57], "無錫":[120.29,31.59], "本溪":[123.73,41.3], "克拉瑪依":[84.77,45.59], "渭南":[109.5,34.52], "馬鞍山":[118.48,31.56], "寶雞":[107.15,34.38], "焦作":[113.21,35.24], "句容":[119.16,31.95], "北京":[116.46,39.92], "徐州":[117.2,34.26], "衡水":[115.72,37.72], "包頭":[110,40.58], "綿陽":[104.73,31.48], "烏魯木齊":[87.68,43.77], "棗莊":[117.57,34.86], "杭州":[120.19,30.26], "淄博":[118.05,36.78], "鞍山":[122.85,41.12], "溧陽":[119.48,31.43], "庫爾勒":[86.06,41.68], "安陽":[114.35,36.1], "開封":[114.35,34.79], "濟南":[117,36.65], "德陽":[104.37,31.13], "溫州":[120.65,28.01], "九江":[115.97,29.71], "邯鄲":[114.47,36.6], "臨安":[119.72,30.23], "蘭州":[103.73,36.03], "滄州":[116.83,38.33], "臨沂":[118.35,35.05], "南充":[106.110698,30.837793], "天津":[117.2,39.13], "富陽":[119.95,30.07], "泰安":[117.13,36.18], "諸暨":[120.23,29.71], "鄭州":[113.65,34.76], "哈爾濱":[126.63,45.75], "聊城":[115.97,36.45], "蕪湖":[118.38,31.33], "唐山":[118.02,39.63], "平頂山":[113.29,33.75], "邢臺":[114.48,37.05], "德州":[116.29,37.45], "濟寧":[116.59,35.38], "荊州":[112.239741,30.335165], "宜昌":[111.3,30.7], "義烏":[120.06,29.32], "麗水":[119.92,28.45], "洛陽":[112.44,34.7], "秦皇島":[119.57,39.95], "株洲":[113.16,27.83], "石家莊":[114.48,38.03], "萊蕪":[117.67,36.19], "常德":[111.69,29.05], "保定":[115.48,38.85], "湘潭":[112.91,27.87], "金華":[119.64,29.12], "岳陽":[113.09,29.37], "長沙":[113,28.21], "衢州":[118.88,28.97], "廊坊":[116.7,39.53], "菏澤":[115.480656,35.23375], "合肥":[117.27,31.86], "武漢":[114.31,30.52], "大慶":[125.03,46.58] }; var convertData = function (data) { var res = []; for (var i = 0; i < data.length; i++) { var geoCoord = geoCoordMap[data[i].name]; if (geoCoord) { res.push(geoCoord.concat(data[i].value)); } } return res; }; option = { backgroundColor: '#404a59', title: { text: '全國主要城市空氣質量', subtext: 'data from PM25.in', sublink: 'http://www.pm25.in', left: 'center', textStyle: { color: '#fff' } }, tooltip: { trigger: 'item' }, legend: { orient: 'vertical', top: 'bottom', left: 'right', data:['pm2.5'], textStyle: { color: '#fff' } }, visualMap: { min: 0, max: 300, splitNumber: 5, color: ['#d94e5d','#eac736','#50a3ba'], textStyle: { color: '#fff' } }, geo: { map: 'china', label: { emphasis: { show: false } }, itemStyle: { normal: { areaColor: '#323c48', borderColor: '#111' }, emphasis: { areaColor: '#2a333d' } } }, series: [ { name: 'pm2.5', type: 'scatter', coordinateSystem: 'geo', data: convertData([ {name: "海門", value: 9}, {name: "鄂爾多斯", value: 12}, {name: "招遠", value: 12}, {name: "舟山", value: 12}, {name: "齊齊哈爾", value: 14}, {name: "鹽城", value: 15}, {name: "赤峰", value: 16}, {name: "青島", value: 18}, {name: "乳山", value: 18}, {name: "金昌", value: 19}, {name: "泉州", value: 21}, {name: "萊西", value: 21}, {name: "日照", value: 21}, {name: "膠南", value: 22}, {name: "南通", value: 23}, {name: "拉薩", value: 24}, {name: "云浮", value: 24}, {name: "梅州", value: 25}, {name: "文登", value: 25}, {name: "上海", value: 25}, {name: "攀枝花", value: 25}, {name: "威海", value: 25}, {name: "承德", value: 25}, {name: "廈門", value: 26}, {name: "汕尾", value: 26}, {name: "潮州", value: 26}, {name: "丹東", value: 27}, {name: "太倉", value: 27}, {name: "曲靖", value: 27}, {name: "煙臺", value: 28}, {name: "福州", value: 29}, {name: "瓦房店", value: 30}, {name: "即墨", value: 30}, {name: "撫順", value: 31}, {name: "玉溪", value: 31}, {name: "張家口", value: 31}, {name: "陽泉", value: 31}, {name: "萊州", value: 32}, {name: "湖州", value: 32}, {name: "汕頭", value: 32}, {name: "昆山", value: 33}, {name: "寧波", value: 33}, {name: "湛江", value: 33}, {name: "揭陽", value: 34}, {name: "榮成", value: 34}, {name: "連云港", value: 35}, {name: "葫蘆島", value: 35}, {name: "常熟", value: 36}, {name: "東莞", value: 36}, {name: "河源", value: 36}, {name: "淮安", value: 36}, {name: "泰州", value: 36}, {name: "南寧", value: 37}, {name: "營口", value: 37}, {name: "惠州", value: 37}, {name: "江陰", value: 37}, {name: "蓬萊", value: 37}, {name: "韶關", value: 38}, {name: "嘉峪關", value: 38}, {name: "廣州", value: 38}, {name: "延安", value: 38}, {name: "太原", value: 39}, {name: "清遠", value: 39}, {name: "中山", value: 39}, {name: "昆明", value: 39}, {name: "壽光", value: 40}, {name: "盤錦", value: 40}, {name: "長治", value: 41}, {name: "深圳", value: 41}, {name: "珠海", value: 42}, {name: "宿遷", value: 43}, {name: "咸陽", value: 43}, {name: "銅川", value: 44}, {name: "平度", value: 44}, {name: "佛山", value: 44}, {name: "???, value: 44}, {name: "江門", value: 45}, {name: "章丘", value: 45}, {name: "肇慶", value: 46}, {name: "大連", value: 47}, {name: "臨汾", value: 47}, {name: "吳江", value: 47}, {name: "石嘴山", value: 49}, {name: "沈陽", value: 50}, {name: "蘇州", value: 50}, {name: "茂名", value: 50}, {name: "嘉興", value: 51}, {name: "長春", value: 51}, {name: "膠州", value: 52}, {name: "銀川", value: 52}, {name: "張家港", value: 52}, {name: "三門峽", value: 53}, {name: "錦州", value: 54}, {name: "南昌", value: 54}, {name: "柳州", value: 54}, {name: "三亞", value: 54}, {name: "自貢", value: 56}, {name: "吉林", value: 56}, {name: "陽江", value: 57}, {name: "瀘州", value: 57}, {name: "西寧", value: 57}, {name: "宜賓", value: 58}, {name: "呼和浩特", value: 58}, {name: "成都", value: 58}, {name: "大同", value: 58}, {name: "鎮(zhèn)江", value: 59}, {name: "桂林", value: 59}, {name: "張家界", value: 59}, {name: "宜興", value: 59}, {name: "北海", value: 60}, {name: "西安", value: 61}, {name: "金壇", value: 62}, {name: "東營", value: 62}, {name: "牡丹江", value: 63}, {name: "遵義", value: 63}, {name: "紹興", value: 63}, {name: "揚州", value: 64}, {name: "常州", value: 64}, {name: "濰坊", value: 65}, {name: "重慶", value: 66}, {name: "臺州", value: 67}, {name: "南京", value: 67}, {name: "濱州", value: 70}, {name: "貴陽", value: 71}, {name: "無錫", value: 71}, {name: "本溪", value: 71}, {name: "克拉瑪依", value: 72}, {name: "渭南", value: 72}, {name: "馬鞍山", value: 72}, {name: "寶雞", value: 72}, {name: "焦作", value: 75}, {name: "句容", value: 75}, {name: "北京", value: 79}, {name: "徐州", value: 79}, {name: "衡水", value: 80}, {name: "包頭", value: 80}, {name: "綿陽", value: 80}, {name: "烏魯木齊", value: 84}, {name: "棗莊", value: 84}, {name: "杭州", value: 84}, {name: "淄博", value: 85}, {name: "鞍山", value: 86}, {name: "溧陽", value: 86}, {name: "庫爾勒", value: 86}, {name: "安陽", value: 90}, {name: "開封", value: 90}, {name: "濟南", value: 92}, {name: "德陽", value: 93}, {name: "溫州", value: 95}, {name: "九江", value: 96}, {name: "邯鄲", value: 98}, {name: "臨安", value: 99}, {name: "蘭州", value: 99}, {name: "滄州", value: 100}, {name: "臨沂", value: 103}, {name: "南充", value: 104}, {name: "天津", value: 105}, {name: "富陽", value: 106}, {name: "泰安", value: 112}, {name: "諸暨", value: 112}, {name: "鄭州", value: 113}, {name: "哈爾濱", value: 114}, {name: "聊城", value: 116}, {name: "蕪湖", value: 117}, {name: "唐山", value: 119}, {name: "平頂山", value: 119}, {name: "邢臺", value: 119}, {name: "德州", value: 120}, {name: "濟寧", value: 120}, {name: "荊州", value: 127}, {name: "宜昌", value: 130}, {name: "義烏", value: 132}, {name: "麗水", value: 133}, {name: "洛陽", value: 134}, {name: "秦皇島", value: 136}, {name: "株洲", value: 143}, {name: "石家莊", value: 147}, {name: "萊蕪", value: 148}, {name: "常德", value: 152}, {name: "保定", value: 153}, {name: "湘潭", value: 154}, {name: "金華", value: 157}, {name: "岳陽", value: 169}, {name: "長沙", value: 175}, {name: "衢州", value: 177}, {name: "廊坊", value: 193}, {name: "菏澤", value: 194}, {name: "合肥", value: 229}, {name: "武漢", value: 273}, {name: "大慶", value: 279} ]), symbolSize: 12, label: { normal: { show: false }, emphasis: { show: false } }, itemStyle: { emphasis: { borderColor: '#fff', borderWidth: 1 } } } ] }; if (option && typeof option === "object") { myChart.setOption(option, true); } </script> </body> </html>
三、視覺映射方式的配置
visualMap 中可以指定數(shù)據(jù)的指定維度映射到對應的視覺元素上。
實例 1
option = { visualMap: [ { type: 'piecewise' min: 0, max: 5000, dimension: 3, // series.data 的第四個維度(即 value[3])被映射 seriesIndex: 4, // 對第四個系列進行映射。 inRange: { // 選中范圍中的視覺配置 color: ['blue', '#121122', 'red'], // 定義了圖形顏色映射的顏色列表, // 數(shù)據(jù)最小值映射到'blue'上, // 最大值映射到'red'上, // 其余自動線性計算。 symbolSize: [30, 100] // 定義了圖形尺寸的映射范圍, // 數(shù)據(jù)最小值映射到30上, // 最大值映射到100上, // 其余自動線性計算。 }, outOfRange: { // 選中范圍外的視覺配置 symbolSize: [30, 100] } }, ... ] };
實例 2
option = { visualMap: [ { ..., inRange: { // 選中范圍中的視覺配置 colorLightness: [0.2, 1], // 映射到明暗度上。也就是對本來的顏色進行明暗度處理。 // 本來的顏色可能是從全局色板中選取的顏色,visualMap組件并不關心。 symbolSize: [30, 100] }, ... }, ... ] };
以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
相關文章
基于JavaScript實現(xiàn)鼠標懸浮彈出跟隨鼠標移動的帶箭頭的信息層
這篇文章主要介紹了基于JavaScript實現(xiàn)鼠標懸浮彈出跟隨鼠標移動的帶箭頭的信息層 的相關資料,需要的朋友可以參考下2016-01-01javascript中負數(shù)算術右移、邏輯右移的奧秘探索
javascript中負數(shù)的算術右移和邏輯右移都十分的讓人迷惑,特別是邏輯右移,接下來的文章中將為大家詳細介紹下為什么右移之后,一個很小的負數(shù)也會得到一個無比巨大的數(shù)2013-10-10BootStrap下拉框在firefox瀏覽器界面不友好的解決方案
BootStrap下拉框在firefox瀏覽器界面很不友好,在firefix瀏覽器打開鏈接就會發(fā)現(xiàn)里面有個小容器,怎么處理呢,下面看下小編給大家分享的有關這個問題的處理方案2016-08-08