欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

echarts交互組件與數(shù)據(jù)的視覺映射

 更新時間:2022年06月07日 09:38:35   作者:springsnow  
這篇文章介紹了echarts交互組件與數(shù)據(jù)的視覺映射,文中通過示例代碼介紹的非常詳細。對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下

交互組件

ECharts 提供了很多交互組件:例組件 legend、標題組件 title、視覺映射組件 visualMap、數(shù)據(jù)區(qū)域縮放組件 dataZoom、時間線組件 timeline。

接下來的內(nèi)容我們將介紹如何使用數(shù)據(jù)區(qū)域縮放組件 dataZoom。

dataZoom

dataZoom 組件可以實現(xiàn)通過鼠標滾輪滾動,放大縮小圖表的功能。

默認情況下 dataZoom 控制 x 軸,即對 x 軸進行數(shù)據(jù)窗口縮放數(shù)據(jù)窗口平移操作。

option = {
    xAxis: {
        type: 'value'
    },
    yAxis: {
        type: 'value'
    },
    dataZoom: [
        {   // 這個dataZoom組件,默認控制x軸。
            type: 'slider', // 這個 dataZoom 組件是 slider 型 dataZoom 組件
            start: 10,      // 左邊在 10% 的位置。
            end: 60         // 右邊在 60% 的位置。
        }
    ],
    series: [
        {
            type: 'scatter', // 這是個『散點圖』
            itemStyle: {
                opacity: 0.8
            },
            symbolSize: function (val) {
                return val[2] * 40;
            },
            data: [["14.616","7.241","0.896"],["3.958","5.701","0.955"],["2.768","8.971","0.669"],["9.051","9.710","0.171"],["14.046","4.182","0.536"],["12.295","1.429","0.962"],["4.417","8.167","0.113"],["0.492","4.771","0.785"],["7.632","2.605","0.645"],["14.242","5.042","0.368"]]
        }
    ]
}

上面的實例只能拖動 dataZoom 組件來縮小或放大圖表。如果想在坐標系內(nèi)進行拖動,以及用鼠標滾輪(或移動觸屏上的兩指滑動)進行縮放,那么需要 再再加上一個 inside 型的 dataZoom 組件。

在以上實例基礎上我們再增加 type: 'inside' 的配置信息:

option = {
    ...,
    dataZoom: [
        {   // 這個dataZoom組件,默認控制x軸。
            type: 'slider', // 這個 dataZoom 組件是 slider 型 dataZoom 組件
            start: 10,      // 左邊在 10% 的位置。
            end: 60         // 右邊在 60% 的位置。
        },
        {   // 這個dataZoom組件,也控制x軸。
            type: 'inside', // 這個 dataZoom 組件是 inside 型 dataZoom 組件
            start: 10,      // 左邊在 10% 的位置。
            end: 60         // 右邊在 60% 的位置。
        }
    ],
    ...
}

當然我們可以通過 dataZoom.xAxisIndex 或 dataZoom.yAxisIndex 來指定 dataZoom 控制哪個或哪些數(shù)軸。

var data1 = [];
var data2 = [];
var data3 = [];

var random = function (max) {
    return (Math.random() * max).toFixed(3);
};

for (var i = 0; i < 500; i++) {
    data1.push([random(15), random(10), random(1)]);
    data2.push([random(10), random(10), random(1)]);
    data3.push([random(15), random(10), random(1)]);
}

option = {
    animation: false,
    legend: {
        data: ['scatter', 'scatter2', 'scatter3']
    },
    tooltip: {
    },
    xAxis: {
        type: 'value',
        min: 'dataMin',
        max: 'dataMax',
        splitLine: {
            show: true
        }
    },
    yAxis: {
        type: 'value',
        min: 'dataMin',
        max: 'dataMax',
        splitLine: {
            show: true
        }
    },
    dataZoom: [
        {
            type: 'slider',
            show: true,
            xAxisIndex: [0],
            start: 1,
            end: 35
        },
        {
            type: 'slider',
            show: true,
            yAxisIndex: [0],
            left: '93%',
            start: 29,
            end: 36
        },
        {
            type: 'inside',
            xAxisIndex: [0],
            start: 1,
            end: 35
        },
        {
            type: 'inside',
            yAxisIndex: [0],
            start: 29,
            end: 36
        }
    ],
    series: [
        {
            name: 'scatter',
            type: 'scatter',
            itemStyle: {
                normal: {
                    opacity: 0.8
                }
            },
            symbolSize: function (val) {
                return val[2] * 40;
            },
            data: data1
        },
        {
            name: 'scatter2',
            type: 'scatter',
            itemStyle: {
                normal: {
                    opacity: 0.8
                }
            },
            symbolSize: function (val) {
                return val[2] * 40;
            },
            data: data2
        },
        {
            name: 'scatter3',
            type: 'scatter',
            itemStyle: {
                normal: {
                    opacity: 0.8,
                }
            },
            symbolSize: function (val) {
                return val[2] * 40;
            },
            data: data3
        }
    ]
}

數(shù)據(jù)的視覺映射

數(shù)據(jù)可視化簡單來講就是將數(shù)據(jù)用圖表的形式來展示,專業(yè)的表達方式就是數(shù)據(jù)到視覺元素的映射過程。

ECharts 的每種圖表本身就內(nèi)置了這種映射過程,我們之前學習到的柱形圖就是將數(shù)據(jù)映射到長度。

此外,ECharts 還提供了 visualMap 組件 來提供通用的視覺映射。visualMap 組件中可以使用的視覺元素有:

  • 圖形類別(symbol)
  • 圖形大小(symbolSize)
  • 顏色(color)
  • 透明度(opacity)
  • 顏色透明度(colorAlpha)
  • 顏色明暗度(colorLightness)
  • 顏色飽和度(colorSaturation)
  • 色調(colorHue)

一、數(shù)據(jù)和維度

ECharts 中的數(shù)據(jù),一般存放于 series.data 中。

不同的圖表類型,數(shù)據(jù)格式有所不一樣,但是他們的共同特點就都是數(shù)據(jù)項(dataItem) 的集合。每個數(shù)據(jù)項含有 數(shù)據(jù)值(value) 和其他信息(可選)。每個數(shù)據(jù)值,可以是單一的數(shù)值(一維)或者一個數(shù)組(多維)。

series.data 最常見的形式 是線性表,即一個普通數(shù)組:

series: {
    data: [
        {       // 這里每一個項就是數(shù)據(jù)項(dataItem)
            value: 2323, // 這是數(shù)據(jù)項的數(shù)據(jù)值(value)
            itemStyle: {...}
        },
        1212,   // 也可以直接是 dataItem 的 value,這更常見。
        2323,   // 每個 value 都是『一維』的。
        4343,
        3434
    ]
}
series: {
    data: [
        {                        // 這里每一個項就是數(shù)據(jù)項(dataItem)
            value: [3434, 129,  '圣馬力諾'], // 這是數(shù)據(jù)項的數(shù)據(jù)值(value)
            itemStyle: {...}
        },
        [1212, 5454, '梵蒂岡'],   // 也可以直接是 dataItem 的 value,這更常見。
        [2323, 3223, '瑙魯'],     // 每個 value 都是『三維』的,每列是一個維度。
        [4343, 23,   '圖瓦盧']    // 假如是『氣泡圖』,常見第一維度映射到x軸,
                                 // 第二維度映射到y(tǒng)軸,
                                 // 第三維度映射到氣泡半徑(symbolSize)
    ]
}

在圖表中,往往默認把 value 的前一兩個維度進行映射,比如取第一個維度映射到x軸,取第二個維度映射到y(tǒng)軸。如果想要把更多的維度展現(xiàn)出來,可以借助 visualMap 。

二、visualMap 組件

visualMap 組件定義了把數(shù)據(jù)的指定維度映射到對應的視覺元素上。

visualMap 組件可以定義多個,從而可以同時對數(shù)據(jù)中的多個維度進行視覺映射。

visualMap 組件可以定義為 分段型(visualMapPiecewise) 或 連續(xù)型(visualMapContinuous),通過 type 來區(qū)分。例如:

option = {
    visualMap: [
        { // 第一個 visualMap 組件
            type: 'continuous', // 定義為連續(xù)型 visualMap
            ...
        },
        { // 第二個 visualMap 組件
            type: 'piecewise', // 定義為分段型 visualMap
            ...
        }
    ],
    ...
};

分段型視覺映射組件,有三種模式:

  • 連續(xù)型數(shù)據(jù)平均分段: 依據(jù) visualMap-piecewise.splitNumber 來自動平均分割成若干塊。
  • 連續(xù)型數(shù)據(jù)自定義分段: 依據(jù) visualMap-piecewise.pieces 來定義每塊范圍。
  • 離散數(shù)據(jù)根據(jù)類別分段: 類別定義在 visualMap-piecewise.categories 中。

分段型視覺映射組件,展現(xiàn)形式如下圖:

實例

<!DOCTYPE html>
<html style="height: 100%">
   <head>
       <meta charset="utf-8">
   </head>
   <body style="height: 100%; margin: 0">
       <div id="container" style="height: 100%"></div>
       <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/echarts.min.js"></script>
       <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts-gl/dist/echarts-gl.min.js"></script>
       <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts-stat/dist/ecStat.min.js"></script>
       <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/extension/dataTool.min.js"></script>
       <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/map/js/china.js"></script>
       <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/map/js/world.js"></script>
       <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/extension/bmap.min.js"></script>
       <script type="text/javascript">
var dom = document.getElementById("container");
var myChart = echarts.init(dom);
var app = {};
option = null;
var geoCoordMap = {
    "海門":[121.15,31.89],
    "鄂爾多斯":[109.781327,39.608266],
    "招遠":[120.38,37.35],
    "舟山":[122.207216,29.985295],
    "齊齊哈爾":[123.97,47.33],
    "鹽城":[120.13,33.38],
    "赤峰":[118.87,42.28],
    "青島":[120.33,36.07],
    "乳山":[121.52,36.89],
    "金昌":[102.188043,38.520089],
    "泉州":[118.58,24.93],
    "萊西":[120.53,36.86],
    "日照":[119.46,35.42],
    "膠南":[119.97,35.88],
    "南通":[121.05,32.08],
    "拉薩":[91.11,29.97],
    "云浮":[112.02,22.93],
    "梅州":[116.1,24.55],
    "文登":[122.05,37.2],
    "上海":[121.48,31.22],
    "攀枝花":[101.718637,26.582347],
    "威海":[122.1,37.5],
    "承德":[117.93,40.97],
    "廈門":[118.1,24.46],
    "汕尾":[115.375279,22.786211],
    "潮州":[116.63,23.68],
    "丹東":[124.37,40.13],
    "太倉":[121.1,31.45],
    "曲靖":[103.79,25.51],
    "煙臺":[121.39,37.52],
    "福州":[119.3,26.08],
    "瓦房店":[121.979603,39.627114],
    "即墨":[120.45,36.38],
    "撫順":[123.97,41.97],
    "玉溪":[102.52,24.35],
    "張家口":[114.87,40.82],
    "陽泉":[113.57,37.85],
    "萊州":[119.942327,37.177017],
    "湖州":[120.1,30.86],
    "汕頭":[116.69,23.39],
    "昆山":[120.95,31.39],
    "寧波":[121.56,29.86],
    "湛江":[110.359377,21.270708],
    "揭陽":[116.35,23.55],
    "榮成":[122.41,37.16],
    "連云港":[119.16,34.59],
    "葫蘆島":[120.836932,40.711052],
    "常熟":[120.74,31.64],
    "東莞":[113.75,23.04],
    "河源":[114.68,23.73],
    "淮安":[119.15,33.5],
    "泰州":[119.9,32.49],
    "南寧":[108.33,22.84],
    "營口":[122.18,40.65],
    "惠州":[114.4,23.09],
    "江陰":[120.26,31.91],
    "蓬萊":[120.75,37.8],
    "韶關":[113.62,24.84],
    "嘉峪關":[98.289152,39.77313],
    "廣州":[113.23,23.16],
    "延安":[109.47,36.6],
    "太原":[112.53,37.87],
    "清遠":[113.01,23.7],
    "中山":[113.38,22.52],
    "昆明":[102.73,25.04],
    "壽光":[118.73,36.86],
    "盤錦":[122.070714,41.119997],
    "長治":[113.08,36.18],
    "深圳":[114.07,22.62],
    "珠海":[113.52,22.3],
    "宿遷":[118.3,33.96],
    "咸陽":[108.72,34.36],
    "銅川":[109.11,35.09],
    "平度":[119.97,36.77],
    "佛山":[113.11,23.05],
    "???:[110.35,20.02],
    "江門":[113.06,22.61],
    "章丘":[117.53,36.72],
    "肇慶":[112.44,23.05],
    "大連":[121.62,38.92],
    "臨汾":[111.5,36.08],
    "吳江":[120.63,31.16],
    "石嘴山":[106.39,39.04],
    "沈陽":[123.38,41.8],
    "蘇州":[120.62,31.32],
    "茂名":[110.88,21.68],
    "嘉興":[120.76,30.77],
    "長春":[125.35,43.88],
    "膠州":[120.03336,36.264622],
    "銀川":[106.27,38.47],
    "張家港":[120.555821,31.875428],
    "三門峽":[111.19,34.76],
    "錦州":[121.15,41.13],
    "南昌":[115.89,28.68],
    "柳州":[109.4,24.33],
    "三亞":[109.511909,18.252847],
    "自貢":[104.778442,29.33903],
    "吉林":[126.57,43.87],
    "陽江":[111.95,21.85],
    "瀘州":[105.39,28.91],
    "西寧":[101.74,36.56],
    "宜賓":[104.56,29.77],
    "呼和浩特":[111.65,40.82],
    "成都":[104.06,30.67],
    "大同":[113.3,40.12],
    "鎮(zhèn)江":[119.44,32.2],
    "桂林":[110.28,25.29],
    "張家界":[110.479191,29.117096],
    "宜興":[119.82,31.36],
    "北海":[109.12,21.49],
    "西安":[108.95,34.27],
    "金壇":[119.56,31.74],
    "東營":[118.49,37.46],
    "牡丹江":[129.58,44.6],
    "遵義":[106.9,27.7],
    "紹興":[120.58,30.01],
    "揚州":[119.42,32.39],
    "常州":[119.95,31.79],
    "濰坊":[119.1,36.62],
    "重慶":[106.54,29.59],
    "臺州":[121.420757,28.656386],
    "南京":[118.78,32.04],
    "濱州":[118.03,37.36],
    "貴陽":[106.71,26.57],
    "無錫":[120.29,31.59],
    "本溪":[123.73,41.3],
    "克拉瑪依":[84.77,45.59],
    "渭南":[109.5,34.52],
    "馬鞍山":[118.48,31.56],
    "寶雞":[107.15,34.38],
    "焦作":[113.21,35.24],
    "句容":[119.16,31.95],
    "北京":[116.46,39.92],
    "徐州":[117.2,34.26],
    "衡水":[115.72,37.72],
    "包頭":[110,40.58],
    "綿陽":[104.73,31.48],
    "烏魯木齊":[87.68,43.77],
    "棗莊":[117.57,34.86],
    "杭州":[120.19,30.26],
    "淄博":[118.05,36.78],
    "鞍山":[122.85,41.12],
    "溧陽":[119.48,31.43],
    "庫爾勒":[86.06,41.68],
    "安陽":[114.35,36.1],
    "開封":[114.35,34.79],
    "濟南":[117,36.65],
    "德陽":[104.37,31.13],
    "溫州":[120.65,28.01],
    "九江":[115.97,29.71],
    "邯鄲":[114.47,36.6],
    "臨安":[119.72,30.23],
    "蘭州":[103.73,36.03],
    "滄州":[116.83,38.33],
    "臨沂":[118.35,35.05],
    "南充":[106.110698,30.837793],
    "天津":[117.2,39.13],
    "富陽":[119.95,30.07],
    "泰安":[117.13,36.18],
    "諸暨":[120.23,29.71],
    "鄭州":[113.65,34.76],
    "哈爾濱":[126.63,45.75],
    "聊城":[115.97,36.45],
    "蕪湖":[118.38,31.33],
    "唐山":[118.02,39.63],
    "平頂山":[113.29,33.75],
    "邢臺":[114.48,37.05],
    "德州":[116.29,37.45],
    "濟寧":[116.59,35.38],
    "荊州":[112.239741,30.335165],
    "宜昌":[111.3,30.7],
    "義烏":[120.06,29.32],
    "麗水":[119.92,28.45],
    "洛陽":[112.44,34.7],
    "秦皇島":[119.57,39.95],
    "株洲":[113.16,27.83],
    "石家莊":[114.48,38.03],
    "萊蕪":[117.67,36.19],
    "常德":[111.69,29.05],
    "保定":[115.48,38.85],
    "湘潭":[112.91,27.87],
    "金華":[119.64,29.12],
    "岳陽":[113.09,29.37],
    "長沙":[113,28.21],
    "衢州":[118.88,28.97],
    "廊坊":[116.7,39.53],
    "菏澤":[115.480656,35.23375],
    "合肥":[117.27,31.86],
    "武漢":[114.31,30.52],
    "大慶":[125.03,46.58]
};

var convertData = function (data) {
    var res = [];
    for (var i = 0; i < data.length; i++) {
        var geoCoord = geoCoordMap[data[i].name];
        if (geoCoord) {
            res.push(geoCoord.concat(data[i].value));
        }
    }
    return res;
};

option = {
    backgroundColor: '#404a59',
    title: {
        text: '全國主要城市空氣質量',
        subtext: 'data from PM25.in',
        sublink: 'http://www.pm25.in',
        left: 'center',
        textStyle: {
            color: '#fff'
        }
    },
    tooltip: {
        trigger: 'item'
    },
    legend: {
        orient: 'vertical',
        top: 'bottom',
        left: 'right',
        data:['pm2.5'],
        textStyle: {
            color: '#fff'
        }
    },
    visualMap: {
        min: 0,
        max: 300,
        splitNumber: 5,
        color: ['#d94e5d','#eac736','#50a3ba'],
        textStyle: {
            color: '#fff'
        }
    },
    geo: {
        map: 'china',
        label: {
            emphasis: {
                show: false
            }
        },
        itemStyle: {
            normal: {
                areaColor: '#323c48',
                borderColor: '#111'
            },
            emphasis: {
                areaColor: '#2a333d'
            }
        }
    },
    series: [
        {
            name: 'pm2.5',
            type: 'scatter',
            coordinateSystem: 'geo',
            data: convertData([
                {name: "海門", value: 9},
                {name: "鄂爾多斯", value: 12},
                {name: "招遠", value: 12},
                {name: "舟山", value: 12},
                {name: "齊齊哈爾", value: 14},
                {name: "鹽城", value: 15},
                {name: "赤峰", value: 16},
                {name: "青島", value: 18},
                {name: "乳山", value: 18},
                {name: "金昌", value: 19},
                {name: "泉州", value: 21},
                {name: "萊西", value: 21},
                {name: "日照", value: 21},
                {name: "膠南", value: 22},
                {name: "南通", value: 23},
                {name: "拉薩", value: 24},
                {name: "云浮", value: 24},
                {name: "梅州", value: 25},
                {name: "文登", value: 25},
                {name: "上海", value: 25},
                {name: "攀枝花", value: 25},
                {name: "威海", value: 25},
                {name: "承德", value: 25},
                {name: "廈門", value: 26},
                {name: "汕尾", value: 26},
                {name: "潮州", value: 26},
                {name: "丹東", value: 27},
                {name: "太倉", value: 27},
                {name: "曲靖", value: 27},
                {name: "煙臺", value: 28},
                {name: "福州", value: 29},
                {name: "瓦房店", value: 30},
                {name: "即墨", value: 30},
                {name: "撫順", value: 31},
                {name: "玉溪", value: 31},
                {name: "張家口", value: 31},
                {name: "陽泉", value: 31},
                {name: "萊州", value: 32},
                {name: "湖州", value: 32},
                {name: "汕頭", value: 32},
                {name: "昆山", value: 33},
                {name: "寧波", value: 33},
                {name: "湛江", value: 33},
                {name: "揭陽", value: 34},
                {name: "榮成", value: 34},
                {name: "連云港", value: 35},
                {name: "葫蘆島", value: 35},
                {name: "常熟", value: 36},
                {name: "東莞", value: 36},
                {name: "河源", value: 36},
                {name: "淮安", value: 36},
                {name: "泰州", value: 36},
                {name: "南寧", value: 37},
                {name: "營口", value: 37},
                {name: "惠州", value: 37},
                {name: "江陰", value: 37},
                {name: "蓬萊", value: 37},
                {name: "韶關", value: 38},
                {name: "嘉峪關", value: 38},
                {name: "廣州", value: 38},
                {name: "延安", value: 38},
                {name: "太原", value: 39},
                {name: "清遠", value: 39},
                {name: "中山", value: 39},
                {name: "昆明", value: 39},
                {name: "壽光", value: 40},
                {name: "盤錦", value: 40},
                {name: "長治", value: 41},
                {name: "深圳", value: 41},
                {name: "珠海", value: 42},
                {name: "宿遷", value: 43},
                {name: "咸陽", value: 43},
                {name: "銅川", value: 44},
                {name: "平度", value: 44},
                {name: "佛山", value: 44},
                {name: "???, value: 44},
                {name: "江門", value: 45},
                {name: "章丘", value: 45},
                {name: "肇慶", value: 46},
                {name: "大連", value: 47},
                {name: "臨汾", value: 47},
                {name: "吳江", value: 47},
                {name: "石嘴山", value: 49},
                {name: "沈陽", value: 50},
                {name: "蘇州", value: 50},
                {name: "茂名", value: 50},
                {name: "嘉興", value: 51},
                {name: "長春", value: 51},
                {name: "膠州", value: 52},
                {name: "銀川", value: 52},
                {name: "張家港", value: 52},
                {name: "三門峽", value: 53},
                {name: "錦州", value: 54},
                {name: "南昌", value: 54},
                {name: "柳州", value: 54},
                {name: "三亞", value: 54},
                {name: "自貢", value: 56},
                {name: "吉林", value: 56},
                {name: "陽江", value: 57},
                {name: "瀘州", value: 57},
                {name: "西寧", value: 57},
                {name: "宜賓", value: 58},
                {name: "呼和浩特", value: 58},
                {name: "成都", value: 58},
                {name: "大同", value: 58},
                {name: "鎮(zhèn)江", value: 59},
                {name: "桂林", value: 59},
                {name: "張家界", value: 59},
                {name: "宜興", value: 59},
                {name: "北海", value: 60},
                {name: "西安", value: 61},
                {name: "金壇", value: 62},
                {name: "東營", value: 62},
                {name: "牡丹江", value: 63},
                {name: "遵義", value: 63},
                {name: "紹興", value: 63},
                {name: "揚州", value: 64},
                {name: "常州", value: 64},
                {name: "濰坊", value: 65},
                {name: "重慶", value: 66},
                {name: "臺州", value: 67},
                {name: "南京", value: 67},
                {name: "濱州", value: 70},
                {name: "貴陽", value: 71},
                {name: "無錫", value: 71},
                {name: "本溪", value: 71},
                {name: "克拉瑪依", value: 72},
                {name: "渭南", value: 72},
                {name: "馬鞍山", value: 72},
                {name: "寶雞", value: 72},
                {name: "焦作", value: 75},
                {name: "句容", value: 75},
                {name: "北京", value: 79},
                {name: "徐州", value: 79},
                {name: "衡水", value: 80},
                {name: "包頭", value: 80},
                {name: "綿陽", value: 80},
                {name: "烏魯木齊", value: 84},
                {name: "棗莊", value: 84},
                {name: "杭州", value: 84},
                {name: "淄博", value: 85},
                {name: "鞍山", value: 86},
                {name: "溧陽", value: 86},
                {name: "庫爾勒", value: 86},
                {name: "安陽", value: 90},
                {name: "開封", value: 90},
                {name: "濟南", value: 92},
                {name: "德陽", value: 93},
                {name: "溫州", value: 95},
                {name: "九江", value: 96},
                {name: "邯鄲", value: 98},
                {name: "臨安", value: 99},
                {name: "蘭州", value: 99},
                {name: "滄州", value: 100},
                {name: "臨沂", value: 103},
                {name: "南充", value: 104},
                {name: "天津", value: 105},
                {name: "富陽", value: 106},
                {name: "泰安", value: 112},
                {name: "諸暨", value: 112},
                {name: "鄭州", value: 113},
                {name: "哈爾濱", value: 114},
                {name: "聊城", value: 116},
                {name: "蕪湖", value: 117},
                {name: "唐山", value: 119},
                {name: "平頂山", value: 119},
                {name: "邢臺", value: 119},
                {name: "德州", value: 120},
                {name: "濟寧", value: 120},
                {name: "荊州", value: 127},
                {name: "宜昌", value: 130},
                {name: "義烏", value: 132},
                {name: "麗水", value: 133},
                {name: "洛陽", value: 134},
                {name: "秦皇島", value: 136},
                {name: "株洲", value: 143},
                {name: "石家莊", value: 147},
                {name: "萊蕪", value: 148},
                {name: "常德", value: 152},
                {name: "保定", value: 153},
                {name: "湘潭", value: 154},
                {name: "金華", value: 157},
                {name: "岳陽", value: 169},
                {name: "長沙", value: 175},
                {name: "衢州", value: 177},
                {name: "廊坊", value: 193},
                {name: "菏澤", value: 194},
                {name: "合肥", value: 229},
                {name: "武漢", value: 273},
                {name: "大慶", value: 279}
            ]),
            symbolSize: 12,
            label: {
                normal: {
                    show: false
                },
                emphasis: {
                    show: false
                }
            },
            itemStyle: {
                emphasis: {
                    borderColor: '#fff',
                    borderWidth: 1
                }
            }
        }
    ]
};
if (option && typeof option === "object") {
    myChart.setOption(option, true);
}
       </script>
   </body>
</html>

三、視覺映射方式的配置

visualMap 中可以指定數(shù)據(jù)的指定維度映射到對應的視覺元素上。

實例 1

option = {
    visualMap: [
        {
            type: 'piecewise'
            min: 0,
            max: 5000,
            dimension: 3,       // series.data 的第四個維度(即 value[3])被映射
            seriesIndex: 4,     // 對第四個系列進行映射。
            inRange: {          // 選中范圍中的視覺配置
                color: ['blue', '#121122', 'red'], // 定義了圖形顏色映射的顏色列表,
                                                    // 數(shù)據(jù)最小值映射到'blue'上,
                                                    // 最大值映射到'red'上,
                                                    // 其余自動線性計算。
                symbolSize: [30, 100]               // 定義了圖形尺寸的映射范圍,
                                                    // 數(shù)據(jù)最小值映射到30上,
                                                    // 最大值映射到100上,
                                                    // 其余自動線性計算。
            },
            outOfRange: {       // 選中范圍外的視覺配置
                symbolSize: [30, 100]
            }
        },
        ...
    ]
};

實例 2

option = {
    visualMap: [
        {
            ...,
            inRange: {          // 選中范圍中的視覺配置
                colorLightness: [0.2, 1], // 映射到明暗度上。也就是對本來的顏色進行明暗度處理。
                                          // 本來的顏色可能是從全局色板中選取的顏色,visualMap組件并不關心。
                symbolSize: [30, 100]
            },
            ...
        },
        ...
    ]
};

以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。

相關文章

最新評論