C#實現(xiàn)FFT(遞歸法)的示例代碼
1. C#實現(xiàn)復(fù)數(shù)類
我們在進行信號分析的時候,難免會使用到復(fù)數(shù)。但是遺憾的是,C#沒有自帶的復(fù)數(shù)類,以下提供了一種復(fù)數(shù)類的構(gòu)建方法。
復(fù)數(shù)相比于實數(shù),可以理解為一個二維數(shù),構(gòu)建復(fù)數(shù)類,我們需要實現(xiàn)以下這些內(nèi)容:
- 復(fù)數(shù)實部與虛部的屬性
- 復(fù)數(shù)與復(fù)數(shù)的加減乘除運算
- 復(fù)數(shù)與實數(shù)的加減乘除運算
- 復(fù)數(shù)取模
- 復(fù)數(shù)取相位角
- 歐拉公式(即eix+y)
C#實現(xiàn)的代碼如下:
public class Complex { double real; double imag; public Complex(double x, double y) //構(gòu)造函數(shù) { this.real = x; this.imag = y; } //通過屬性實現(xiàn)對復(fù)數(shù)實部與虛部的單獨查看和設(shè)置 public double Real { set { this.real = value; } get { return this.real; } } public double Imag { set { this.imag = value; } get { return this.imag; } } //重載加法 public static Complex operator +(Complex c1, Complex c2) { return new Complex(c1.real + c2.real, c1.imag + c2.imag); } public static Complex operator +(double c1, Complex c2) { return new Complex(c1 + c2.real, c2.imag); } public static Complex operator +(Complex c1, double c2) { return new Complex(c1.Real + c2, c1.imag); } //重載減法 public static Complex operator -(Complex c1, Complex c2) { return new Complex(c1.real - c2.real, c1.imag - c2.imag); } public static Complex operator -(double c1, Complex c2) { return new Complex(c1 - c2.real, -c2.imag); } public static Complex operator -(Complex c1, double c2) { return new Complex(c1.real - c2, c1.imag); } //重載乘法 public static Complex operator *(Complex c1, Complex c2) { double cr = c1.real * c2.real - c1.imag * c2.imag; double ci = c1.imag * c2.real + c2.imag * c1.real; return new Complex(Math.Round(cr, 4), Math.Round(ci, 4)); } public static Complex operator *(double c1, Complex c2) { double cr = c1 * c2.real; double ci = c1 * c2.imag; return new Complex(Math.Round(cr, 4), Math.Round(ci, 4)); } public static Complex operator *(Complex c1, double c2) { double cr = c1.Real * c2; double ci = c1.Imag * c2; return new Complex(Math.Round(cr, 4), Math.Round(ci, 4)); } //重載除法 public static Complex operator /(Complex c1, Complex c2) { if (c2.real == 0 && c2.imag == 0) { return new Complex(double.NaN, double.NaN); } else { double cr = (c1.imag * c2.imag + c2.real * c1.real) / (c2.imag * c2.imag + c2.real * c2.real); double ci = (c1.imag * c2.real - c2.imag * c1.real) / (c2.imag * c2.imag + c2.real * c2.real); return new Complex(Math.Round(cr, 4), Math.Round(ci, 4)); //保留四位小數(shù)后輸出 } } public static Complex operator /(double c1, Complex c2) { if (c2.real == 0 && c2.imag == 0) { return new Complex(double.NaN, double.NaN); } else { double cr = c1 * c2.Real / (c2.imag * c2.imag + c2.real * c2.real); double ci = -c1 * c2.imag / (c2.imag * c2.imag + c2.real * c2.real); return new Complex(Math.Round(cr, 4), Math.Round(ci, 4)); //保留四位小數(shù)后輸出 } } public static Complex operator /(Complex c1, double c2) { if (c2 == 0) { return new Complex(double.NaN, double.NaN); } else { double cr = c1.Real / c2; double ci = c1.imag / c2; return new Complex(Math.Round(cr, 4), Math.Round(ci, 4)); //保留四位小數(shù)后輸出 } } //創(chuàng)建一個取模的方法 public static double Abs(Complex c) { return Math.Sqrt(c.imag * c.imag + c.real * c.real); } //創(chuàng)建一個取相位角的方法 public static double Angle(Complex c) { return Math.Round(Math.Atan2(c.real, c.imag), 6);//保留6位小數(shù)輸出 } //重載字符串轉(zhuǎn)換方法,便于顯示復(fù)數(shù) public override string ToString() { if (imag >= 0) return string.Format("{0}+i{1}", real, imag); else return string.Format("{0}-i{1}", real, -imag); } //歐拉公式 public static Complex Exp(Complex c) { double amplitude = Math.Exp(c.real); double cr = amplitude * Math.Cos(c.imag); double ci = amplitude * Math.Sin(c.imag); return new Complex(Math.Round(cr, 4), Math.Round(ci, 4));//保留四位小數(shù)輸出 } }
2. 遞歸法實現(xiàn)FFT
以下的遞歸法是基于奇偶分解實現(xiàn)的。
奇偶分解的原理推導(dǎo)如下:
x(2r)和x(2r+1)都是長度為N/2−1的數(shù)據(jù)序列,不妨令
則原來的DFT就變成了:
于是,將原來的N點傅里葉變換變成了兩個N/2點傅里葉變換的線性組合。
但是,N/2點傅里葉變換只能確定N/2個頻域數(shù)據(jù),另外N/2個數(shù)據(jù)怎么確定呢?
因為X1(k)和X2(k)周期都是N/2,所以有
從而得到:
綜上,我們就可以得到遞歸法實現(xiàn)FFT的流程:
1.對于每組數(shù)據(jù),按奇偶分解成兩組數(shù)據(jù)
2.兩組數(shù)據(jù)分別進行傅里葉變換,得到X1(k)和X2(k)
3.總體數(shù)據(jù)的X(k)由下式確定:
4.對上述過程進行遞歸
具體代碼實現(xiàn)如下:
public Complex[] FFTre(Complex[] c) { int n = c.Length; Complex[] cout = new Complex[n]; if (n == 1) { cout[0] = c[0]; return cout; } else { double n_2_f = n / 2; int n_2 = (int)Math.Floor(n_2_f); Complex[] c1 = new Complex[n / 2]; Complex[] c2 = new Complex[n / 2]; for (int i = 0; i < n_2; i++) { c1[i] = c[2 * i]; c2[i] = c[2 * i + 1]; } Complex[] c1out = FFTre(c1); Complex[] c2out = FFTre(c2); Complex[] c3 = new Complex[n / 2]; for (int i = 0; i < n / 2; i++) { c3[i] = new Complex(0, -2 * Math.PI * i / n); } for (int i = 0; i < n / 2; i++) { c2out[i] = c2out[i] * Complex.Exp(c3[i]); } for (int i = 0; i < n / 2; i++) { cout[i] = c1out[i] + c2out[i]; cout[i + n / 2] = c1out[i] - c2out[i]; } return cout; } }
3. 補充:窗函數(shù)
順便提供幾個常用的窗函數(shù):
- Rectangle
- Bartlett
- Hamming
- Hanning
- Blackman
public class WDSLib { //以下窗函數(shù)均為periodic public double[] Rectangle(int len) { double[] win = new double[len]; for (int i = 0; i < len; i++) { win[i] = 1; } return win; } public double[] Bartlett(int len) { double length = (double)len - 1; double[] win = new double[len]; for (int i = 0; i < len; i++) { if (i < len / 2) { win[i] = 2 * i / length; } else { win[i] = 2 - 2 * i / length; } } return win; } public double[] Hamming(int len) { double[] win = new double[len]; for (int i = 0; i < len; i++) { win[i] = 0.54 - 0.46 * Math.Cos(Math.PI * 2 * i / len); } return win; } public double[] Hanning(int len) { double[] win = new double[len]; for (int i = 0; i < len; i++) { win[i] = 0.5 * (1 - Math.Cos(2 * Math.PI * i / len)); } return win; } public double[] Blackman(int len) { double[] win = new double[len]; for (int i = 0; i < len; i++) { win[i] = 0.42 - 0.5 * Math.Cos(Math.PI * 2 * (double)i / len) + 0.08 * Math.Cos(Math.PI * 4 * (double)i / len); } return win; } }
以上就是C#實現(xiàn)FFT(遞歸法)的示例代碼的詳細(xì)內(nèi)容,更多關(guān)于C# FFT遞歸法的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
C#將HashTable中鍵列表或值列表復(fù)制到一維數(shù)組的方法
這篇文章主要介紹了C#將HashTable中鍵列表或值列表復(fù)制到一維數(shù)組中方法,涉及C#操作HashTable的相關(guān)技巧,需要的朋友可以參考下2015-04-04Unity UGUI的ScrollRect滾動視圖組件使用詳解
這篇文章主要為大家介紹了Unity UGUI的ScrollRect滾動視圖組件使用示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2023-07-07