從Hello?World開始理解GraphQL背后處理及執(zhí)行過程
前言
在上篇文章《初識GraphQL》中我們大致的了解了GraphQL作用,并通過簡單示例初步體驗了GraphQL的使用。下面我們從Hello World開始來進一步了解GraphQL背后的處理。
Hello World
package com.graphqljava.tutorial.bookdetails; import graphql.ExecutionResult; import graphql.GraphQL; import graphql.schema.GraphQLSchema; import graphql.schema.StaticDataFetcher; import graphql.schema.idl.RuntimeWiring; import graphql.schema.idl.SchemaGenerator; import graphql.schema.idl.SchemaParser; import graphql.schema.idl.TypeDefinitionRegistry; public class HelloWorld { public static void main(String[] args) { // 從最簡單的schema字符串開始,省去對graphqls文件的讀取 String schema = "type Query{hello: String}"; // 用于獲得graphql schema定義,并解析放入TypeDefinitionRegistry中,以便放置在SchemaGenerator中使用 SchemaParser schemaParser = new SchemaParser(); // 解析schema定義字符串,并創(chuàng)建包含一組類型定義的TypeDefinitionRegistry TypeDefinitionRegistry typeDefinitionRegistry = schemaParser.parse(schema); // runtime wiring 是data fetchers、type resolves和定制標量的規(guī)范,這些都需要連接到GraphQLSchema中 RuntimeWiring runtimeWiring = RuntimeWiring.newRuntimeWiring() // 添加一個類型連接 .type("Query", builder -> builder.dataFetcher("hello", new StaticDataFetcher("world"))) .build(); //schemaGenerator對象可以使用typeDefinitionRegistry、runtimeWiring生成工作運行時schema SchemaGenerator schemaGenerator = new SchemaGenerator(); //graphQLSchema代表graphql引擎的組合類型系統(tǒng)。 GraphQLSchema graphQLSchema = schemaGenerator.makeExecutableSchema(typeDefinitionRegistry, runtimeWiring); //構建GraphQL用于執(zhí)行查詢 GraphQL build = GraphQL.newGraphQL(graphQLSchema).build(); //執(zhí)行并獲得結果 ExecutionResult executionResult = build.execute("{hello}"); System.out.println(executionResult.getData().toString()); } }
從上面的代碼注釋可以看到GraphQL大致執(zhí)行的過程:
- 根據(jù)給定的schema內容使用SchemaParser進行解析獲得schema定義TypeDefinitionRegistry。
- 拿到了schema定義之后還需要定義RuntimeWiring用于定義不同類型的type resolves和對應的數(shù)據(jù)提取器data fetchers。
- 使用GraphQLSchema把TypeDefinitionRegistry和RuntimeWiring組合在一起便于以后的使用。
- 使用GraphQLSchema構建出GraphQL用于后面的QL執(zhí)行。
- 傳入QL使用GraphQL執(zhí)行并獲得結果ExecutionResult。
從外層使用代碼可以得出核心處理類為:SchemaParser、TypeDefinitionRegistry、RuntimeWiring、GraphQLSchema、GraphQL。
下面我們分配看看核心類是怎么處理的。
SchemaParser
解析schema字符串定義并生成TypeDefinitionRegistry。
public TypeDefinitionRegistry parse(String schemaInput) throws SchemaProblem { try { Parser parser = new Parser(); Document document = parser.parseDocument(schemaInput); return buildRegistry(document); } catch (ParseCancellationException e) { throw handleParseException(e); } }
使用Document構建TypeDefinitionRegistry
public TypeDefinitionRegistry buildRegistry(Document document) { List<GraphQLError> errors = new ArrayList<>(); TypeDefinitionRegistry typeRegistry = new TypeDefinitionRegistry(); List<Definition> definitions = document.getDefinitions(); for (Definition definition : definitions) { if (definition instanceof SDLDefinition) { typeRegistry.add((SDLDefinition) definition).ifPresent(errors::add); } } if (errors.size() > 0) { throw new SchemaProblem(errors); } else { return typeRegistry; } }
可以看的出來TypeDefinitionRegistry只是對Document的定義提取,重點還是在于Document的生成,我們可以先通過debugger來先看看Document的大致內容。
可以看到就是把schema字符串解析成了方便后續(xù)使用的Document對象,我們還是詳細看看這個對象里面的屬性和大概的生成過程。
Parser#parseDocument
public Document parseDocument(String input, String sourceName) { CharStream charStream; if(sourceName == null) { charStream = CharStreams.fromString(input); } else{ charStream = CharStreams.fromString(input, sourceName); } GraphqlLexer lexer = new GraphqlLexer(charStream); CommonTokenStream tokens = new CommonTokenStream(lexer); GraphqlParser parser = new GraphqlParser(tokens); parser.removeErrorListeners(); parser.getInterpreter().setPredictionMode(PredictionMode.SLL); parser.setErrorHandler(new BailErrorStrategy()); //詞法分析從schema中解析出tokens(每個關鍵字、最后一個為EOF),documentContext包含children、start/stop字符等相當于結構。 GraphqlParser.DocumentContext documentContext = parser.document(); GraphqlAntlrToLanguage antlrToLanguage = new GraphqlAntlrToLanguage(tokens); // 生成document Document doc = antlrToLanguage.createDocument(documentContext); Token stop = documentContext.getStop(); List<Token> allTokens = tokens.getTokens(); if (stop != null && allTokens != null && !allTokens.isEmpty()) { Token last = allTokens.get(allTokens.size() - 1); // // do we have more tokens in the stream than we consumed in the parse? // if yes then its invalid. We make sure its the same channel boolean notEOF = last.getType() != Token.EOF; boolean lastGreaterThanDocument = last.getTokenIndex() > stop.getTokenIndex(); boolean sameChannel = last.getChannel() == stop.getChannel(); if (notEOF && lastGreaterThanDocument && sameChannel) { throw new ParseCancellationException("There are more tokens in the query that have not been consumed"); } } return doc; }
tokens&documentContext
可以看到,主要是通過提取schema的關鍵字、識別結構最后生成Document主要內容為類型定義定義和類型定義中的字段定義。
RuntimeWiring
runtime wiring 是data fetchers、type resolves和定制標量的規(guī)范,這些都需要連接到GraphQLSchema中。
RuntimeWiring.Builder#type
這種形式允許使用lambda作為type wiring的構建器。
public Builder type(String typeName, UnaryOperator<TypeRuntimeWiring.Builder> builderFunction) { TypeRuntimeWiring.Builder builder = builderFunction.apply(TypeRuntimeWiring.newTypeWiring(typeName)); return type(builder.build()); }
添加type wiring。
public Builder type(TypeRuntimeWiring typeRuntimeWiring) { String typeName = typeRuntimeWiring.getTypeName(); Map<String, DataFetcher> typeDataFetchers = dataFetchers.computeIfAbsent(typeName, k -> new LinkedHashMap<>()); typeRuntimeWiring.getFieldDataFetchers().forEach(typeDataFetchers::put); defaultDataFetchers.put(typeName, typeRuntimeWiring.getDefaultDataFetcher()); TypeResolver typeResolver = typeRuntimeWiring.getTypeResolver(); if (typeResolver != null) { this.typeResolvers.put(typeName, typeResolver); } EnumValuesProvider enumValuesProvider = typeRuntimeWiring.getEnumValuesProvider(); if (enumValuesProvider != null) { this.enumValuesProviders.put(typeName, enumValuesProvider); } return this; }
可以看到主要就是網(wǎng)RuntimeWiring里面添加了dataFetchers、defaultDataFetchers、typeResolvers、enumValuesProviders。下面分別介紹下各屬性的含義:
- DataFetcher:負責返回給定graphql字段數(shù)據(jù)值。graphql引擎使用datafetcher將邏輯字段解析/獲取到運行時對象,該對象將作為整個graphql grapql.ExecutionResult的一部分發(fā)送回來。
GraphQLScalarType:scalar type是graphql樹類型的葉節(jié)點。該類型允許你定義新的scalar type。
- TypeResolver:這在類型解析期間被調用,以確定在運行時GraphQLInterfaceTypes和GraphQLUnionTypes應該動態(tài)使用哪些具體的GraphQLObjectType。
- GraphQLInterfaceTypes:在graphql中,接口是一種抽象類型,它定義了一組字段,類型必須包含這些字段才能實現(xiàn)該接口。在運行時,TypeResolver用于獲取一個接口對象值,并決定哪個GraphQLObjectType表示此接口類型。關于這個概念的更多細節(jié),請參見graphql.org/learn/schem…
- GraphQLUnionTypes:聯(lián)合類型,相當于組合。
- GraphQLObjectType:這是工作馬類型,表示一個對象,它具有一個或多個字段值,這些字段可以根據(jù)對象類型等進行自身的處理,直到到達由GraphQLScalarTypes表示的類型樹的葉節(jié)點。關于這個概念的更多細節(jié),請參見graphql.org/learn/schem…
- SchemaDirectiveWiring:SchemaDirectiveWiring負責基于schema定義語言(SDL)中放置在該元素上的指令增強運行時元素。它可以增強graphql運行時元素并添加新的行為,例如通過更改字段graphql.schema. datafetcher。
- WiringFactory:WiringFactory允許您基于IDL定義更動態(tài)的連接TypeResolvers和DataFetchers。
- EnumValuesProvider:為每個graphql Enum值提供Java運行時值。用于IDL驅動的schema創(chuàng)建。Enum值被認為是靜態(tài)的:在創(chuàng)建schema時調用。在執(zhí)行查詢時不使用。
- GraphqlFieldVisibility:這允許您控制graphql字段的可見性。默認情況下,graphql-java使每個定義的字段可見,但您可以實現(xiàn)此接口的實例并減少特定字段的可見性。
GraphQL
build
例子中通過傳入GraphQLSchema構建GraphQL。
public GraphQL build() { assertNotNull(graphQLSchema, "graphQLSchema must be non null"); assertNotNull(queryExecutionStrategy, "queryStrategy must be non null"); assertNotNull(idProvider, "idProvider must be non null"); return new GraphQL(graphQLSchema, queryExecutionStrategy, mutationExecutionStrategy, subscriptionExecutionStrategy, idProvider, instrumentation, preparsedDocumentProvider); }
除了graphQLSchema都是默認值,我們大概看看各個成員分別是用來干嘛的:
- queryExecutionStrategy:異步非阻塞地運行字段的標準graphql執(zhí)行策略。
- mutationExecutionStrategy:異步非阻塞執(zhí)行,但串行:當時只有一個字段將被解析。關于每個字段的非串行(并行)執(zhí)行,請參閱AsyncExecutionStrategy。
- subscriptionExecutionStrategy:通過使用reactive-streams作為訂閱查詢的輸出結果來實現(xiàn)graphql訂閱。
- idProvider:executionid的提供者
- instrumentation:提供了檢測GraphQL查詢執(zhí)行步驟的功能。
- preparsedDocumentProvider:客戶端連接文檔緩存和/或查詢白名單的接口。
execute
下面我們還是來看看具體的執(zhí)行:
public ExecutionResult execute(ExecutionInput executionInput) { try { return executeAsync(executionInput).join(); } catch (CompletionException e) { if (e.getCause() instanceof RuntimeException) { throw (RuntimeException) e.getCause(); } else { throw e; } } }
用提供的輸入對象執(zhí)行graphql query。這將返回一個承諾(又名CompletableFuture),以提供一個ExecutionResult,這是執(zhí)行所提供查詢的結果。
public CompletableFuture<ExecutionResult> executeAsync(ExecutionInput executionInput) { try { log.debug("Executing request. operation name: '{}'. query: '{}'. variables '{}'", executionInput.getOperationName(), executionInput.getQuery(), executionInput.getVariables()); // 創(chuàng)建InstrumentationState對象,這是一個跟蹤Instrumentation全生命周期的對象 InstrumentationState instrumentationState = instrumentation.createState(new InstrumentationCreateStateParameters(this.graphQLSchema, executionInput)); InstrumentationExecutionParameters inputInstrumentationParameters = new InstrumentationExecutionParameters(executionInput, this.graphQLSchema, instrumentationState); // 檢測輸入對象 executionInput = instrumentation.instrumentExecutionInput(executionInput, inputInstrumentationParameters); InstrumentationExecutionParameters instrumentationParameters = new InstrumentationExecutionParameters(executionInput, this.graphQLSchema, instrumentationState); // 在執(zhí)行檢測 chain前調用 InstrumentationContext<ExecutionResult> executionInstrumentation = instrumentation.beginExecution(instrumentationParameters); // 檢測GraphQLSchema GraphQLSchema graphQLSchema = instrumentation.instrumentSchema(this.graphQLSchema, instrumentationParameters); // 對客戶端傳遞的query進行驗證并執(zhí)行 CompletableFuture<ExecutionResult> executionResult = parseValidateAndExecute(executionInput, graphQLSchema, instrumentationState); // // finish up instrumentation executionResult = executionResult.whenComplete(executionInstrumentation::onCompleted); // // allow instrumentation to tweak the result executionResult = executionResult.thenCompose(result -> instrumentation.instrumentExecutionResult(result, instrumentationParameters)); return executionResult; } catch (AbortExecutionException abortException) { return CompletableFuture.completedFuture(abortException.toExecutionResult()); } }
parseValidateAndExecute(executionInput, graphQLSchema, instrumentationState)進行驗證并執(zhí)行,驗證我們就不看了直接看執(zhí)行:
private CompletableFuture<ExecutionResult> execute(ExecutionInput executionInput, Document document, GraphQLSchema graphQLSchema, InstrumentationState instrumentationState) { String query = executionInput.getQuery(); String operationName = executionInput.getOperationName(); Object context = executionInput.getContext(); Execution execution = new Execution(queryStrategy, mutationStrategy, subscriptionStrategy, instrumentation); ExecutionId executionId = idProvider.provide(query, operationName, context); log.debug("Executing '{}'. operation name: '{}'. query: '{}'. variables '{}'", executionId, executionInput.getOperationName(), executionInput.getQuery(), executionInput.getVariables()); CompletableFuture<ExecutionResult> future = execution.execute(document, graphQLSchema, executionId, executionInput, instrumentationState); future = future.whenComplete((result, throwable) -> { if (throwable != null) { log.error(String.format("Execution '%s' threw exception when executing : query : '%s'. variables '%s'", executionId, executionInput.getQuery(), executionInput.getVariables()), throwable); } else { int errorCount = result.getErrors().size(); if (errorCount > 0) { log.debug("Execution '{}' completed with '{}' errors", executionId, errorCount); } else { log.debug("Execution '{}' completed with zero errors", executionId); } } }); return future; }
這里打印日志為
Executing '9c81e267-c55a-4ebd-9f9c-3a2270b28103'. operation name: 'null'. query: '{hello}'. variables '{}'
還要繼續(xù)往下看:
Execution#execute
public CompletableFuture<ExecutionResult> execute(Document document, GraphQLSchema graphQLSchema, ExecutionId executionId, ExecutionInput executionInput, InstrumentationState instrumentationState) { // 獲得要執(zhí)行的操作 NodeUtil.GetOperationResult getOperationResult = NodeUtil.getOperation(document, executionInput.getOperationName()); Map<String, FragmentDefinition> fragmentsByName = getOperationResult.fragmentsByName; OperationDefinition operationDefinition = getOperationResult.operationDefinition; ValuesResolver valuesResolver = new ValuesResolver(); // 獲得輸入的參數(shù) Map<String, Object> inputVariables = executionInput.getVariables(); List<VariableDefinition> variableDefinitions = operationDefinition.getVariableDefinitions(); Map<String, Object> coercedVariables; try { coercedVariables = valuesResolver.coerceArgumentValues(graphQLSchema, variableDefinitions, inputVariables); } catch (RuntimeException rte) { if (rte instanceof GraphQLError) { return completedFuture(new ExecutionResultImpl((GraphQLError) rte)); } throw rte; } ExecutionContext executionContext = newExecutionContextBuilder() .instrumentation(instrumentation) .instrumentationState(instrumentationState) .executionId(executionId) .graphQLSchema(graphQLSchema) .queryStrategy(queryStrategy) .mutationStrategy(mutationStrategy) .subscriptionStrategy(subscriptionStrategy) .context(executionInput.getContext()) .root(executionInput.getRoot()) .fragmentsByName(fragmentsByName) .variables(coercedVariables) .document(document) .operationDefinition(operationDefinition) // 放入dataloder .dataLoaderRegistry(executionInput.getDataLoaderRegistry()) .build(); InstrumentationExecutionParameters parameters = new InstrumentationExecutionParameters( executionInput, graphQLSchema, instrumentationState ); // 獲得執(zhí)行上下文 executionContext = instrumentation.instrumentExecutionContext(executionContext, parameters); return executeOperation(executionContext, parameters, executionInput.getRoot(), executionContext.getOperationDefinition()); }
獲得了執(zhí)行上下文并執(zhí)行,下面繼續(xù)看executeOperation
:
private CompletableFuture<ExecutionResult> executeOperation(ExecutionContext executionContext, InstrumentationExecutionParameters instrumentationExecutionParameters, Object root, OperationDefinition operationDefinition) { // ... ExecutionStrategyParameters parameters = newParameters() .executionStepInfo(executionStepInfo) .source(root) .fields(fields) .nonNullFieldValidator(nonNullableFieldValidator) .path(path) .build(); CompletableFuture<ExecutionResult> result; try { ExecutionStrategy executionStrategy; if (operation == OperationDefinition.Operation.MUTATION) { executionStrategy = mutationStrategy; } else if (operation == SUBSCRIPTION) { executionStrategy = subscriptionStrategy; } else { executionStrategy = queryStrategy; } log.debug("Executing '{}' query operation: '{}' using '{}' execution strategy", executionContext.getExecutionId(), operation, executionStrategy.getClass().getName()); result = executionStrategy.execute(executionContext, parameters); } catch (NonNullableFieldWasNullException e) { // ... } // ... return deferSupport(executionContext, result); }
日志輸出:
Executing '9c81e267-c55a-4ebd-9f9c-3a2270b28103' query operation: 'QUERY' using 'graphql.execution.AsyncExecutionStrategy' execution strategy
最終使用AsyncExecutionStrategy策略執(zhí)行,繼續(xù)往下看:
AsynExecutionStrategy#execute
public CompletableFuture<ExecutionResult> execute(ExecutionContext executionContext, ExecutionStrategyParameters parameters) throws NonNullableFieldWasNullException { Instrumentation instrumentation = executionContext.getInstrumentation(); InstrumentationExecutionStrategyParameters instrumentationParameters = new InstrumentationExecutionStrategyParameters(executionContext, parameters); ExecutionStrategyInstrumentationContext executionStrategyCtx = instrumentation.beginExecutionStrategy(instrumentationParameters); Map<String, List<Field>> fields = parameters.getFields(); // 字段名稱 List<String> fieldNames = new ArrayList<>(fields.keySet()); List<CompletableFuture<FieldValueInfo>> futures = new ArrayList<>(); List<String> resolvedFields = new ArrayList<>(); for (String fieldName : fieldNames) { List<Field> currentField = fields.get(fieldName); ExecutionPath fieldPath = parameters.getPath().segment(mkNameForPath(currentField)); ExecutionStrategyParameters newParameters = parameters .transform(builder -> builder.field(currentField).path(fieldPath).parent(parameters)); if (isDeferred(executionContext, newParameters, currentField)) { executionStrategyCtx.onDeferredField(currentField); continue; } resolvedFields.add(fieldName); // 處理字段,這里處理的是"hello" CompletableFuture<FieldValueInfo> future = resolveFieldWithInfo(executionContext, newParameters); futures.add(future); } CompletableFuture<ExecutionResult> overallResult = new CompletableFuture<>(); executionStrategyCtx.onDispatched(overallResult); //并行執(zhí)行所有filed處理的futures Async.each(futures).whenComplete((completeValueInfos, throwable) -> { BiConsumer<List<ExecutionResult>, Throwable> handleResultsConsumer = handleResults(executionContext, resolvedFields, overallResult); if (throwable != null) { handleResultsConsumer.accept(null, throwable.getCause()); return; } List<CompletableFuture<ExecutionResult>> executionResultFuture = completeValueInfos.stream().map(FieldValueInfo::getFieldValue).collect(Collectors.toList()); executionStrategyCtx.onFieldValuesInfo(completeValueInfos); Async.each(executionResultFuture).whenComplete(handleResultsConsumer); }).exceptionally((ex) -> { // if there are any issues with combining/handling the field results, // complete the future at all costs and bubble up any thrown exception so // the execution does not hang. overallResult.completeExceptionally(ex); return null; }); overallResult.whenComplete(executionStrategyCtx::onCompleted); return overallResult; }
可以看到這里會遍歷所有fileds拿到每個filed future,最后并行執(zhí)行,下面具體看看:
ExecutionStrategy#resolveFieldWithInfo
調用該函數(shù)來獲取字段的值及額外的運行時信息,并根據(jù)graphql query內容進一步處理它。
protected CompletableFuture<FieldValueInfo> resolveFieldWithInfo(ExecutionContext executionContext, ExecutionStrategyParameters parameters) { GraphQLFieldDefinition fieldDef = getFieldDef(executionContext, parameters, parameters.getField().get(0)); Instrumentation instrumentation = executionContext.getInstrumentation(); InstrumentationContext<ExecutionResult> fieldCtx = instrumentation.beginField( new InstrumentationFieldParameters(executionContext, fieldDef, createExecutionStepInfo(executionContext, parameters, fieldDef)) ); CompletableFuture<Object> fetchFieldFuture = fetchField(executionContext, parameters); CompletableFuture<FieldValueInfo> result = fetchFieldFuture.thenApply((fetchedValue) -> completeField(executionContext, parameters, fetchedValue)); CompletableFuture<ExecutionResult> executionResultFuture = result.thenCompose(FieldValueInfo::getFieldValue); fieldCtx.onDispatched(executionResultFuture); executionResultFuture.whenComplete(fieldCtx::onCompleted); return result; }
調用該函數(shù)獲取filed值,使用從filed GraphQlFiledDefinition關聯(lián)的DataFetcher。
protected CompletableFuture<Object> fetchField(ExecutionContext executionContext, ExecutionStrategyParameters parameters) { Field field = parameters.getField().get(0); GraphQLObjectType parentType = (GraphQLObjectType) parameters.getExecutionStepInfo().getUnwrappedNonNullType(); GraphQLFieldDefinition fieldDef = getFieldDef(executionContext.getGraphQLSchema(), parentType, field); GraphqlFieldVisibility fieldVisibility = executionContext.getGraphQLSchema().getFieldVisibility(); Map<String, Object> argumentValues = valuesResolver.getArgumentValues(fieldVisibility, fieldDef.getArguments(), field.getArguments(), executionContext.getVariables()); GraphQLOutputType fieldType = fieldDef.getType(); DataFetchingFieldSelectionSet fieldCollector = DataFetchingFieldSelectionSetImpl.newCollector(executionContext, fieldType, parameters.getField()); // ... CompletableFuture<Object> fetchedValue; // 獲得dataFetcher,這里為HelloWorld的`new StaticDataFetcher("world")` DataFetcher dataFetcher = fieldDef.getDataFetcher(); dataFetcher = instrumentation.instrumentDataFetcher(dataFetcher, instrumentationFieldFetchParams); ExecutionId executionId = executionContext.getExecutionId(); try { log.debug("'{}' fetching field '{}' using data fetcher '{}'...", executionId, executionStepInfo.getPath(), dataFetcher.getClass().getName()); // 執(zhí)行dataFetcher獲取值,enviroment為上下文環(huán)境包含參數(shù) Object fetchedValueRaw = dataFetcher.get(environment); log.debug("'{}' field '{}' fetch returned '{}'", executionId, executionStepInfo.getPath(), fetchedValueRaw == null ? "null" : fetchedValueRaw.getClass().getName()); // 如果是具體值就返回已經(jīng)有值的CompletableFuture,如果是CompletionStage就直接返回 fetchedValue = Async.toCompletableFuture(fetchedValueRaw); } catch (Exception e) { log.debug(String.format("'%s', field '%s' fetch threw exception", executionId, executionStepInfo.getPath()), e); fetchedValue = new CompletableFuture<>(); fetchedValue.completeExceptionally(e); } fetchCtx.onDispatched(fetchedValue); // 對結果的后續(xù)處理 return fetchedValue .handle((result, exception) -> { fetchCtx.onCompleted(result, exception); if (exception != null) { handleFetchingException(executionContext, parameters, field, fieldDef, argumentValues, environment, exception); return null; } else { return result; } }) .thenApply(result -> unboxPossibleDataFetcherResult(executionContext, parameters, result)) .thenApply(this::unboxPossibleOptional); }
總體執(zhí)行過程
以上就是從Hello World開始理解GraphQL背后處理的詳細內容,更多關于GraphQL處理的資料請關注腳本之家其它相關文章!
相關文章
詳解Spring 攔截器流程及多個攔截器的執(zhí)行順序
這篇文章主要介紹了Spring 攔截器流程及多個攔截器的執(zhí)行順序的相關資料,幫助大家更好的理解和學習使用Spring框架,感興趣的朋友可以了解下2021-05-05PowerJob的ProcessorLoader工作流程源碼解讀
這篇文章主要為大家介紹了PowerJob的ProcessorLoader工作流程源碼解讀,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2023-12-12SpringBoot實現(xiàn)application配置信息加密
在配置文件中,我們有開發(fā)環(huán)境配置和生產(chǎn)環(huán)境配置,而生產(chǎn)環(huán)境的配置信息是需要做好防護的,避免外泄,所以本文為大家整理了application配置信息加密的方法,需要的可以參考下2023-07-07java計算自然數(shù)中的水仙花數(shù)的方法分享
這篇文章主要介紹了java計算自然數(shù)中的水仙花數(shù)的方法,需要的朋友可以參考下2014-03-03