欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Kotlin協(xié)程Dispatchers原理示例詳解

 更新時(shí)間:2022年08月04日 10:58:36   作者:瀟風(fēng)寒月  
這篇文章主要為大家介紹了Kotlin協(xié)程Dispatchers原理示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪

前置知識(shí)

Kotlin協(xié)程不是什么空中閣樓,Kotlin源代碼會(huì)被編譯成class字節(jié)碼文件,最終會(huì)運(yùn)行到虛擬機(jī)中。所以從本質(zhì)上講,Kotlin和Java是類(lèi)似的,都是可以編譯產(chǎn)生class的語(yǔ)言,但最終還是會(huì)受到虛擬機(jī)的限制,它們的代碼最終會(huì)在虛擬機(jī)上的某個(gè)線程上被執(zhí)行。

之前我們分析了launch的原理,但當(dāng)時(shí)我們沒(méi)有去分析協(xié)程創(chuàng)建出來(lái)后是如何與線程產(chǎn)生關(guān)聯(lián)的,怎么被分發(fā)到具體的線程上執(zhí)行的,本篇文章就帶大家分析一下。

要想搞懂Dispatchers,我們先來(lái)看一下Dispatchers、CoroutineDispatcher、ContinuationInterceptor、CoroutineContext之間的關(guān)系

public actual object Dispatchers {
    @JvmStatic
    public actual val Default: CoroutineDispatcher = DefaultScheduler
    @JvmStatic
    public actual val Main: MainCoroutineDispatcher get() = MainDispatcherLoader.dispatcher
    @JvmStatic
    public actual val Unconfined: CoroutineDispatcher = kotlinx.coroutines.Unconfined
    @JvmStatic
    public val IO: CoroutineDispatcher = DefaultIoScheduler
}
public abstract class CoroutineDispatcher :
    AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
}
public interface ContinuationInterceptor : CoroutineContext.Element {}
public interface Element : CoroutineContext {}

Dispatchers中存放的是協(xié)程調(diào)度器(它本身是一個(gè)單例),有我們平時(shí)常用的IO、Default、Main等。這些協(xié)程調(diào)度器都是CoroutineDispatcher的子類(lèi),這些協(xié)程調(diào)度器其實(shí)都是CoroutineContext。

demo

我們先來(lái)看一個(gè)關(guān)于launch的demo:

fun main() {
    val coroutineScope = CoroutineScope(Job())
    coroutineScope.launch {
        println("Thread : ${Thread.currentThread().name}")
    }
    Thread.sleep(5000L)
}

在生成CoroutineScope時(shí),demo中沒(méi)有傳入相關(guān)的協(xié)程調(diào)度器,也就是Dispatchers。那這個(gè)launch會(huì)運(yùn)行到哪個(gè)線程之上?

運(yùn)行試一下:

Thread : DefaultDispatcher-worker-1

居然運(yùn)行到了DefaultDispatcher-worker-1線程上,這看起來(lái)明顯是Dispatchers.Default協(xié)程調(diào)度器里面的線程。我明明沒(méi)傳Dispatchers相關(guān)的context,居然會(huì)運(yùn)行到子線程上。說(shuō)明運(yùn)行到default線程是launch默認(rèn)的。

它是怎么與default線程產(chǎn)生關(guān)聯(lián)的?打開(kāi)源碼一探究竟:

public fun CoroutineScope.launch(
    context: CoroutineContext = EmptyCoroutineContext,
    start: CoroutineStart = CoroutineStart.DEFAULT,
    block: suspend CoroutineScope.() -> Unit
): Job {
    //代碼1
    val newContext = newCoroutineContext(context)
    //代碼2
    val coroutine = if (start.isLazy)
        LazyStandaloneCoroutine(newContext, block) else
        StandaloneCoroutine(newContext, active = true)
    //代碼3
    coroutine.start(start, coroutine, block)
    return coroutine
}
  • 將傳入的CoroutineContext構(gòu)造出新的context
  • 啟動(dòng)模式,判斷是否為懶加載,如果是懶加載則構(gòu)建懶加載協(xié)程對(duì)象,否則就是標(biāo)準(zhǔn)的
  • 啟動(dòng)協(xié)程

我們重點(diǎn)關(guān)注代碼1,這是與CoroutineContext相關(guān)的。

public actual fun CoroutineScope.newCoroutineContext(context: CoroutineContext): CoroutineContext {
    //從父協(xié)程那里繼承過(guò)來(lái)的context+這次的context
    val combined = coroutineContext.foldCopiesForChildCoroutine() + context
    val debug = if (DEBUG) combined + CoroutineId(COROUTINE_ID.incrementAndGet()) else combined
    //combined可以簡(jiǎn)單的把它看成是一個(gè)map,它是CoroutineContext類(lèi)型的
    //如果當(dāng)前context不等于Dispatchers.Default,而且從map里面取ContinuationInterceptor(用于攔截之后分發(fā)線程的)值為空,說(shuō)明沒(méi)有傳入?yún)f(xié)程應(yīng)該在哪個(gè)線程上運(yùn)行的相關(guān)參數(shù)
    return if (combined !== Dispatchers.Default && combined[ContinuationInterceptor] == null)
        debug + Dispatchers.Default else debug
}

調(diào)用launch的時(shí)候,我們沒(méi)有傳入context,默認(rèn)參數(shù)是EmptyCoroutineContext。這里的combined,它其實(shí)是CoroutineContext類(lèi)型的,可以簡(jiǎn)單的看成是map(其實(shí)不是,只是類(lèi)似)。

通過(guò)combined[ContinuationInterceptor]可以將傳入的線程調(diào)度相關(guān)的參數(shù)給取出來(lái),這里如果取出來(lái)為空,是給該context添加了一個(gè)Dispatchers.Default,然后把新的context返回出去了。所以launch默認(rèn)情況下,會(huì)走到default線程去執(zhí)行。

補(bǔ)充一點(diǎn):CoroutineContext能夠通過(guò)+連接是因?yàn)樗鼉?nèi)部有個(gè)public operator fun plus函數(shù)。能夠通過(guò)combined[ContinuationInterceptor]這種方式訪問(wèn)元素是因?yàn)橛袀€(gè)public operator fun get函數(shù)。

public interface CoroutineContext {
     /**
     * Returns the element with the given [key] from this context or `null`.
     */
    public operator fun <E : Element> get(key: Key<E>): E?
     /**
     * Returns a context containing elements from this context and elements from  other [context].
     * The elements from this context with the same key as in the other one are dropped.
     */
    public operator fun plus(context: CoroutineContext): CoroutineContext {
        ......
    }
}

startCoroutineCancellable

上面我們分析了launch默認(rèn)情況下,context中會(huì)增加Dispatchers.Default的這個(gè)協(xié)程調(diào)度器,到時(shí)launch的Lambda會(huì)在default線程上執(zhí)行,其中具體流程是怎么樣的,我們分析一下。

在之前的文章 Kotlin協(xié)程之launch原理 中我們分析過(guò),launch默認(rèn)情況下會(huì)最終執(zhí)行到startCoroutineCancellable函數(shù)。

public fun <T> (suspend () -> T).startCoroutineCancellable(completion: Continuation<T>): Unit = runSafely(completion) {
    //構(gòu)建ContinuationImpl
    createCoroutineUnintercepted(completion).intercepted().resumeCancellableWith(Result.success(Unit))
}
public actual fun <T> (suspend () -> T).createCoroutineUnintercepted(
    completion: Continuation<T>
): Continuation<Unit> {
    val probeCompletion = probeCoroutineCreated(completion)
    return if (this is BaseContinuationImpl)
        //走這里
        create(probeCompletion)
    else
        createCoroutineFromSuspendFunction(probeCompletion) {
            (this as Function1<Continuation<T>, Any?>).invoke(it)
        }
}

Kotlin協(xié)程之launch原理 文章中,咱們分析過(guò)create(probeCompletion)這里創(chuàng)建出來(lái)的是launch的那個(gè)Lambda,編譯器會(huì)產(chǎn)生一個(gè)匿名內(nèi)部類(lèi),它繼承自SuspendLambda,而SuspendLambda是繼承自ContinuationImpl。

所以 createCoroutineUnintercepted(completion)一開(kāi)始構(gòu)建出來(lái)的是一個(gè)ContinuationImpl,接下來(lái)需要去看它的intercepted()函數(shù)。

intercepted()函數(shù)

internal abstract class ContinuationImpl(
    completion: Continuation<Any?>?,
    private val _context: CoroutineContext?
) : BaseContinuationImpl(completion) {
    constructor(completion: Continuation<Any?>?) : this(completion, completion?.context)
    public override val context: CoroutineContext
        get() = _context!!
    @Transient
    private var intercepted: Continuation<Any?>? = null
    public fun intercepted(): Continuation<Any?> =
        intercepted
            ?: (context[ContinuationInterceptor]?.interceptContinuation(this) ?: this)
                .also { intercepted = it }
}

第一次走到intercepted()函數(shù)時(shí),intercepted肯定是為null的,還沒(méi)初始化。此時(shí)會(huì)通過(guò)context[ContinuationInterceptor]取出Dispatcher對(duì)象,然后調(diào)用該Dispatcher對(duì)象的interceptContinuation()函數(shù)。這個(gè)Dispatcher對(duì)象在demo這里其實(shí)就是Dispatchers.Default。

public actual object Dispatchers {
    @JvmStatic
    public actual val Default: CoroutineDispatcher = DefaultScheduler
}

可以看到,Dispatchers.Default是一個(gè)CoroutineDispatcher對(duì)象,interceptContinuation()函數(shù)就在CoroutineDispatcher中。

public abstract class CoroutineDispatcher :
    AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
    public final override fun <T> interceptContinuation(continuation: Continuation<T>): Continuation<T> =
        DispatchedContinuation(this, continuation)
}
public fun <T> (suspend () -> T).startCoroutineCancellable(completion: Continuation<T>): Unit = runSafely(completion) {
    createCoroutineUnintercepted(completion).intercepted().resumeCancellableWith(Result.success(Unit))
}

這個(gè)方法非常簡(jiǎn)單,就是新建并且返回了一個(gè)DispatchedContinuation對(duì)象,將this和continuation給傳入進(jìn)去。這里的this是Dispatchers.Default。

所以,最終我們發(fā)現(xiàn)走完startCoroutineCancellable的前2步之后,也就是走完intercepted()之后,創(chuàng)建的是DispatchedContinuation對(duì)象,最后是調(diào)用的DispatchedContinuation的resumeCancellableWith函數(shù)。最后這步比較關(guān)鍵,這是真正將協(xié)程的具體執(zhí)行邏輯放到線程上執(zhí)行的部分。

internal class DispatchedContinuation<in T>(
    //這里傳入的dispatcher在demo中是Dispatchers.Default
    @JvmField val dispatcher: CoroutineDispatcher,
    @JvmField val continuation: Continuation<T>
) : DispatchedTask<T>(MODE_UNINITIALIZED), CoroutineStackFrame, Continuation<T> by continuation {
    inline fun resumeCancellableWith(
        result: Result<T>,
        noinline onCancellation: ((cause: Throwable) -> Unit)?
    ) {
        val state = result.toState(onCancellation)
        //代碼1
        if (dispatcher.isDispatchNeeded(context)) {
            _state = state
            resumeMode = MODE_CANCELLABLE
            //代碼2
            dispatcher.dispatch(context, this)
        } else {
            //代碼3
            executeUnconfined(state, MODE_CANCELLABLE) {
                if (!resumeCancelled(state)) {
                    resumeUndispatchedWith(result)
                }
            }
        }
    }
}
internal abstract class DispatchedTask<in T>(
    @JvmField public var resumeMode: Int
) : SchedulerTask() {
    ......
}
internal actual typealias SchedulerTask = Task
internal abstract class Task(
    @JvmField var submissionTime: Long,
    @JvmField var taskContext: TaskContext
) : Runnable {
    ......
}
public abstract class CoroutineDispatcher :
    AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
    public abstract fun dispatch(context: CoroutineContext, block: Runnable)
    public open fun isDispatchNeeded(context: CoroutineContext): Boolean = true
}

從DispatchedContinuation的繼承結(jié)構(gòu)來(lái)看,它既是一個(gè)Continuation(通過(guò)委托給傳入的continuation參數(shù)),也是一個(gè)Runnable。

  • 首先看代碼1:這個(gè)dispatcher在demo中其實(shí)是Dispatchers.Default ,然后調(diào)用它的isDispatchNeeded(),這個(gè)函數(shù)定義在CoroutineDispatcher中,默認(rèn)就是返回true,只有Dispatchers.Unconfined返回false
  • 代碼2:調(diào)用Dispatchers.Default的dispatch函數(shù),將context和自己(DispatchedContinuation,也就是Runnable)傳過(guò)去了
  • 代碼3:對(duì)應(yīng)Dispatchers.Unconfined的情況,它的isDispatchNeeded()返回false

現(xiàn)在我們要分析代碼2之后的執(zhí)行邏輯,也就是將context和Runnable傳入到dispatch函數(shù)之后是怎么執(zhí)行的。按道理,看到Runnable,那可能這個(gè)與線程執(zhí)行相關(guān),應(yīng)該離我們想要的答案不遠(yuǎn)了。回到Dispatchers,我們發(fā)現(xiàn)Dispatchers.Default是DefaultScheduler類(lèi)型的,那我們就去DefaultScheduler中或者其父類(lèi)中去找dispatch函數(shù)。

DefaultScheduler中找dispatch函數(shù)

public actual object Dispatchers {
    @JvmStatic
    public actual val Default: CoroutineDispatcher = DefaultScheduler
}
internal object DefaultScheduler : SchedulerCoroutineDispatcher(
    CORE_POOL_SIZE, MAX_POOL_SIZE,
    IDLE_WORKER_KEEP_ALIVE_NS, DEFAULT_SCHEDULER_NAME
) {
    ......
}
internal open class SchedulerCoroutineDispatcher(
    private val corePoolSize: Int = CORE_POOL_SIZE,
    private val maxPoolSize: Int = MAX_POOL_SIZE,
    private val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
    private val schedulerName: String = "CoroutineScheduler",
) : ExecutorCoroutineDispatcher() {
    private var coroutineScheduler = createScheduler()
    private fun createScheduler() =
        CoroutineScheduler(corePoolSize, maxPoolSize, idleWorkerKeepAliveNs, schedulerName)
     override fun dispatch(context: CoroutineContext, block: Runnable): Unit = coroutineScheduler.dispatch(block)
}

最后發(fā)現(xiàn)dispatch函數(shù)在其父類(lèi)SchedulerCoroutineDispatcher中,在這里構(gòu)建了一個(gè)CoroutineScheduler,直接調(diào)用了CoroutineScheduler對(duì)象的dispatch,然后將Runnable(也就是上面的DispatchedContinuation對(duì)象)傳入。

Runnable傳入

internal class CoroutineScheduler(
    @JvmField val corePoolSize: Int,
    @JvmField val maxPoolSize: Int,
    @JvmField val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
    @JvmField val schedulerName: String = DEFAULT_SCHEDULER_NAME
) : Executor, Closeable {
    override fun execute(command: Runnable) = dispatch(command)
    fun dispatch(block: Runnable, taskContext: TaskContext = NonBlockingContext, tailDispatch: Boolean = false) {
        trackTask() // this is needed for virtual time support
        //代碼1:構(gòu)建Task,Task實(shí)現(xiàn)了Runnable接口
        val task = createTask(block, taskContext)
        //代碼2:取當(dāng)前線程轉(zhuǎn)為Worker對(duì)象,Worker是一個(gè)繼承自Thread的類(lèi)
        val currentWorker = currentWorker()
        //代碼3:嘗試將Task提交到本地隊(duì)列并根據(jù)結(jié)果執(zhí)行相應(yīng)的操作
        val notAdded = currentWorker.submitToLocalQueue(task, tailDispatch)
        if (notAdded != null) {
            //代碼4:notAdded不為null,則再將notAdded(Task)添加到全局隊(duì)列中
            if (!addToGlobalQueue(notAdded)) {
                throw RejectedExecutionException("$schedulerName was terminated")
            }
        }
        val skipUnpark = tailDispatch && currentWorker != null
        // Checking 'task' instead of 'notAdded' is completely okay
        if (task.mode == TASK_NON_BLOCKING) {
            if (skipUnpark) return
            //代碼5: 創(chuàng)建Worker并開(kāi)始執(zhí)行該線程
            signalCpuWork()
        } else {
            // Increment blocking tasks anyway
            signalBlockingWork(skipUnpark = skipUnpark)
        }
    }
    private fun currentWorker(): Worker? = (Thread.currentThread() as? Worker)?.takeIf { it.scheduler == this }
    internal inner class Worker private constructor() : Thread() {
        .....
    }
}

觀察發(fā)現(xiàn),原來(lái)CoroutineScheduler類(lèi)實(shí)現(xiàn)了java.util.concurrent.Executor接口,同時(shí)實(shí)現(xiàn)了它的execute方法,這個(gè)方法也會(huì)調(diào)用dispatch()。

  • 代碼1:首先是通過(guò)Runnable構(gòu)建了一個(gè)Task,這個(gè)Task其實(shí)也是實(shí)現(xiàn)了Runnable接口,只是把傳入的Runnable包裝了一下
  • 代碼2:將當(dāng)前線程取出來(lái)轉(zhuǎn)換成Worker,當(dāng)然第一次時(shí),這個(gè)轉(zhuǎn)換不會(huì)成功,這個(gè)Worker是繼承自Thread的一個(gè)類(lèi)
  • 代碼3:將task提交到本地隊(duì)列中,這個(gè)本地隊(duì)列待會(huì)兒會(huì)在Worker這個(gè)線程執(zhí)行時(shí)取出Task,并執(zhí)行Task
  • 代碼4:如果task提交到本地隊(duì)列的過(guò)程中沒(méi)有成功,那么會(huì)添加到全局隊(duì)列中,待會(huì)兒也會(huì)被Worker取出來(lái)Task并執(zhí)行
  • 代碼5:創(chuàng)建Worker線程,并開(kāi)始執(zhí)行

開(kāi)始執(zhí)行Worker線程之后,我們需要看一下這個(gè)線程的run方法執(zhí)行的是啥,也就是它的具體執(zhí)行邏輯。

Worker線程執(zhí)行邏輯

internal inner class Worker private constructor() : Thread() {
    override fun run() = runWorker()
    private fun runWorker() {
        var rescanned = false
        while (!isTerminated && state != WorkerState.TERMINATED) {
            //代碼1
            val task = findTask(mayHaveLocalTasks)
            if (task != null) {
                rescanned = false
                minDelayUntilStealableTaskNs = 0L
                //代碼2
                executeTask(task)
                continue
            } else {
                mayHaveLocalTasks = false
            }
            if (minDelayUntilStealableTaskNs != 0L) {
                if (!rescanned) {
                    rescanned = true
                } else {
                    rescanned = false
                    tryReleaseCpu(WorkerState.PARKING)
                    interrupted()
                    LockSupport.parkNanos(minDelayUntilStealableTaskNs)
                    minDelayUntilStealableTaskNs = 0L
                }
                continue
            }
            tryPark()
        }
        tryReleaseCpu(WorkerState.TERMINATED)
    }
    fun findTask(scanLocalQueue: Boolean): Task? {
        if (tryAcquireCpuPermit()) return findAnyTask(scanLocalQueue)
        // If we can't acquire a CPU permit -- attempt to find blocking task
        val task = if (scanLocalQueue) {
            localQueue.poll() ?: globalBlockingQueue.removeFirstOrNull()
        } else {
            globalBlockingQueue.removeFirstOrNull()
        }
        return task ?: trySteal(blockingOnly = true)
    }
    private fun executeTask(task: Task) {
        val taskMode = task.mode
        idleReset(taskMode)
        beforeTask(taskMode)
        runSafely(task)
        afterTask(taskMode)
    }
    fun runSafely(task: Task) {
        try {
            task.run()
        } catch (e: Throwable) {
            val thread = Thread.currentThread()
            thread.uncaughtExceptionHandler.uncaughtException(thread, e)
        } finally {
            unTrackTask()
        }
    }
}

run方法直接調(diào)用的runWorker(),在里面是一個(gè)while循環(huán),不斷從隊(duì)列中取Task來(lái)執(zhí)行。

  • 代碼1:從本地隊(duì)列或者全局隊(duì)列中取出Task
  • 代碼2:執(zhí)行這個(gè)task,最終其實(shí)就是調(diào)用這個(gè)Runnable的run方法。

也就是說(shuō),在Worker這個(gè)線程中,執(zhí)行了這個(gè)Runnable的run方法。還記得這個(gè)Runnable是誰(shuí)么?它就是上面我們看過(guò)的DispatchedContinuation,這里的run方法執(zhí)行的就是協(xié)程任務(wù),那這塊具體的run方法的實(shí)現(xiàn)邏輯,我們應(yīng)該到DispatchedContinuation中去找。

internal class DispatchedContinuation<in T>(
    @JvmField val dispatcher: CoroutineDispatcher,
    @JvmField val continuation: Continuation<T>
) : DispatchedTask<T>(MODE_UNINITIALIZED), CoroutineStackFrame, Continuation<T> by continuation {
    ......
}
internal abstract class DispatchedTask<in T>(
    @JvmField public var resumeMode: Int
) : SchedulerTask() {
    public final override fun run() {
        assert { resumeMode != MODE_UNINITIALIZED } // should have been set before dispatching
        val taskContext = this.taskContext
        var fatalException: Throwable? = null
        try {
            val delegate = delegate as DispatchedContinuation<T>
            val continuation = delegate.continuation
            withContinuationContext(continuation, delegate.countOrElement) {
                val context = continuation.context
                val state = takeState() // NOTE: Must take state in any case, even if cancelled
                val exception = getExceptionalResult(state)
                /*
                 * Check whether continuation was originally resumed with an exception.
                 * If so, it dominates cancellation, otherwise the original exception
                 * will be silently lost.
                 */
                val job = if (exception == null && resumeMode.isCancellableMode) context[Job] else null
                //非空,且未處于active狀態(tài)
                if (job != null && !job.isActive) {
                    //開(kāi)始之前,協(xié)程已經(jīng)被取消,將具體的Exception傳出去
                    val cause = job.getCancellationException()
                    cancelCompletedResult(state, cause)
                    continuation.resumeWithStackTrace(cause)
                } else {
                    //有異常,傳遞異常
                    if (exception != null) {
                        continuation.resumeWithException(exception)
                    } else {
                        //代碼1
                        continuation.resume(getSuccessfulResult(state))
                    }
                }
            }
        } catch (e: Throwable) {
            // This instead of runCatching to have nicer stacktrace and debug experience
            fatalException = e
        } finally {
            val result = runCatching { taskContext.afterTask() }
            handleFatalException(fatalException, result.exceptionOrNull())
        }
    }
}

我們主要看一下代碼1處,調(diào)用了resume開(kāi)啟協(xié)程。前面沒(méi)有異常,才開(kāi)始啟動(dòng)協(xié)程,這里才是真正的開(kāi)始啟動(dòng)協(xié)程,開(kāi)始執(zhí)行l(wèi)aunch傳入的Lambda表達(dá)式。這個(gè)時(shí)候,協(xié)程的邏輯是在Worker這個(gè)線程上執(zhí)行的了,切到某個(gè)線程上執(zhí)行的邏輯已經(jīng)完成了。

ps: rusume會(huì)走到BaseContinuationImpl的rusumeWith,然后走到launch傳入的Lambda匿名內(nèi)部類(lèi)的invokeSuspend方法,開(kāi)始執(zhí)行狀態(tài)機(jī)邏輯。前面的文章 Kotlin協(xié)程createCoroutine和startCoroutine原理 我們分析過(guò)這里,這里就只是簡(jiǎn)單提一下。

到這里,Dispatchers的執(zhí)行流程就算完了,前后都串起來(lái)了。

小結(jié)

Dispatchers是協(xié)程框架中與線程交互的關(guān)鍵。底層會(huì)有不同的線程池,Dispatchers.Default、IO,協(xié)程任務(wù)來(lái)了的時(shí)候會(huì)封裝成一個(gè)個(gè)的Runnable,丟到線程中執(zhí)行,這些Runnable的run方法中執(zhí)行的其實(shí)就是continuation.resume,也就是launch的Lambda生成的SuspendLambda匿名內(nèi)部類(lèi),也就是開(kāi)啟協(xié)程狀態(tài)機(jī),開(kāi)始協(xié)程的真正執(zhí)行。

以上就是Kotlin協(xié)程Dispatchers原理示例詳解的詳細(xì)內(nèi)容,更多關(guān)于Kotlin協(xié)程Dispatchers的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

最新評(píng)論