Opencv檢測多個圓形(霍夫圓檢測,輪廓面積篩選)
主要是利用霍夫圓檢測、面積篩選等完成多個圓形檢測,具體代碼及結(jié)果如下。
第一部分是頭文件(common.h):
#pragma once #include<opencv2/opencv.hpp> #include<opencv2/highgui.hpp> #include<iostream> using namespace std; using namespace cv; extern Mat src; void imageBasicInformation(Mat& src);//圖像基本信息 const Mat houghCirclePre(Mat& srcPre);//霍夫圓檢測預(yù)處理 void houghCircle(Mat& srcPreHough);//霍夫圓檢測 const Mat RectCirclePre(Mat& srcPre);//面積篩選擬合圓的預(yù)處理 void AreaCircles(Mat& AreaInput);//面積篩選擬合圓檢測
第二部分是主函數(shù):
#include"common.h" Mat src; int main() { src = imread("1.jpg",1); if (src.empty()) { cout << "圖像不存在!" << endl; } else { namedWindow("原圖", 1); imshow("原圖", src); imageBasicInformation(src); Mat srcPreHough = houghCirclePre(src); houghCircle(srcPreHough); Mat RectCir = RectCirclePre(src); AreaCircles(RectCir); waitKey(0); destroyAllWindows(); } return 0; }
第三部分為霍夫圓檢測函數(shù)(hough.cpp)
主要包括輸出圖像的基本信息函數(shù):void imageBasicInformation(Mat& src)
霍夫圓檢測預(yù)處理函數(shù):const Mat houghCirclePre(Mat& srcPre)
霍夫圓檢測函數(shù):void houghCircle(Mat& srcPreHough)
#include"common.h" Mat graySrc, srcPre;//灰度圖,霍夫檢測預(yù)處理, Mat threshold_grayaSrc;//二值化圖 Mat erode_threshold_graySrc, dilate_threshold_graySrc;//二值化后腐蝕,二值化后膨脹 void imageBasicInformation(Mat& src) { int cols = src.cols; int rows = src.rows; int channels = src.channels(); cout << "圖像寬為:" << cols << endl; cout << "圖像高為:" << rows << endl; cout << "圖像通道數(shù):" << channels << endl; } const Mat houghCirclePre(Mat& srcPre) { double houghCirclePreTime = static_cast<double>(getTickCount()); cvtColor(srcPre, graySrc, COLOR_BGR2GRAY); GaussianBlur(graySrc, graySrc, Size(3, 3), 2, 2);//濾波 threshold(graySrc, threshold_grayaSrc, 150, 255, 1);//二值化 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); dilate(threshold_grayaSrc, dilate_threshold_graySrc, element);//膨脹 erode(dilate_threshold_graySrc, erode_threshold_graySrc, element);//腐蝕 houghCirclePreTime = ((double)getTickCount() - houghCirclePreTime) / getTickFrequency(); cout << "霍夫圓預(yù)處理時間為:" << houghCirclePreTime << "秒" << endl; return erode_threshold_graySrc; } void houghCircle(Mat& srcPreHough) { cout << "進(jìn)入霍夫圓檢測" << endl; vector<Vec3f> circles; HoughCircles(srcPreHough, circles, HOUGH_GRADIENT, 1, 60, 1, 35, 0, 0); cout << "圓的個數(shù)" << circles.size() << endl; for (size_t i = 0;i < circles.size();i++) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);//畫圓心 circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);//畫圓 } namedWindow("霍夫檢測結(jié)果", 0); imshow("霍夫檢測結(jié)果", src); imwrite("霍夫圓檢測結(jié)果.jpg", src);//保存檢測結(jié)果 }
第四部分為利用面積篩選擬合圓檢測(AreaCircle.cpp)
主要包括預(yù)處理函數(shù):const Mat RectCirclePre(Mat& srcPre)
面積篩選擬合圓檢測函數(shù):void AreaCircles(Mat& AreaInput)
#include"common.h" Mat graySrc, srcPre;//灰度圖,霍夫檢測預(yù)處理, Mat threshold_grayaSrc;//二值化圖 Mat erode_threshold_graySrc, dilate_threshold_graySrc;//二值化后腐蝕,二值化后膨脹 void imageBasicInformation(Mat& src) { int cols = src.cols; int rows = src.rows; int channels = src.channels(); cout << "圖像寬為:" << cols << endl; cout << "圖像高為:" << rows << endl; cout << "圖像通道數(shù):" << channels << endl; } const Mat houghCirclePre(Mat& srcPre) { double houghCirclePreTime = static_cast<double>(getTickCount()); cvtColor(srcPre, graySrc, COLOR_BGR2GRAY); GaussianBlur(graySrc, graySrc, Size(3, 3), 2, 2);//濾波 threshold(graySrc, threshold_grayaSrc, 150, 255, 1);//二值化 Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); dilate(threshold_grayaSrc, dilate_threshold_graySrc, element);//膨脹 erode(dilate_threshold_graySrc, erode_threshold_graySrc, element);//腐蝕 houghCirclePreTime = ((double)getTickCount() - houghCirclePreTime) / getTickFrequency(); cout << "霍夫圓預(yù)處理時間為:" << houghCirclePreTime << "秒" << endl; return erode_threshold_graySrc; } void houghCircle(Mat& srcPreHough) { cout << "進(jìn)入霍夫圓檢測" << endl; vector<Vec3f> circles; HoughCircles(srcPreHough, circles, HOUGH_GRADIENT, 1, 60, 1, 35, 0, 0); cout << "圓的個數(shù)" << circles.size() << endl; for (size_t i = 0;i < circles.size();i++) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); circle(src, center, 3, Scalar(0, 255, 0), -1, 8, 0);//畫圓心 circle(src, center, radius, Scalar(0, 0, 255), 3, 8, 0);//畫圓 } namedWindow("霍夫檢測結(jié)果", 0); imshow("霍夫檢測結(jié)果", src); imwrite("霍夫圓檢測結(jié)果.jpg", src);//保存檢測結(jié)果 }
結(jié)果如下(自己畫的兩個圓):
原圖:
以下為霍夫圓檢測結(jié)果:
以下為面積篩選擬合圓結(jié)果:
到此這篇關(guān)于Opencv檢測多個圓形(霍夫圓檢測,輪廓面積篩選)的文章就介紹到這了,更多相關(guān)Opencv檢測圓形內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
C++任意線程通過hwnd實現(xiàn)將操作發(fā)送到UI線程執(zhí)行
做Windows界面開發(fā)時,經(jīng)常需要在多線程環(huán)境中將操作拋到主線程執(zhí)行,下面我們就來學(xué)習(xí)一下如何在不需要重新定義消息以及接收消息的情況下實現(xiàn)這一要求,感興趣的可以了解下2024-03-03C++中構(gòu)造函數(shù)的參數(shù)缺省的詳解
這篇文章主要介紹了C++中構(gòu)造函數(shù)的參數(shù)缺省的詳解的相關(guān)資料,希望通過本文能幫助到大家,需要的朋友可以參考下2017-10-10Linux下Select多路復(fù)用實現(xiàn)簡易聊天室示例
大家好,本篇文章主要講的是Linux下Select多路復(fù)用實現(xiàn)簡易聊天室示例,感興趣的同學(xué)趕快來看一看吧,對你有幫助的話記得收藏一下,方便下次瀏覽2021-12-12