C++?pimpl機制詳細講解
什么是PImpl機制
Pointer to implementation(PImpl ),通過將類的實現細節(jié)放在一個單獨的類中,從其對象表示中刪除它們,通過一個不透明的指針訪問它們(cppreference 是這么說的)
通過一個私有的成員指針,將指針所指向的類的內部實現數據進行隱藏
class Demo {
public:
...
private:
DemoImp* imp_;
}
為什么用PImpl 機制
個人拙見
- C++ 不像Java 后端型代碼,能有行業(yè)定式的列目錄名形成規(guī)范(controller、Dao等)
- 隱藏實現,降低耦合性和分離接口(隱藏類的具體實現)
- 通過編譯期的封裝(隱藏實現類的細節(jié))
業(yè)界實現
優(yōu)秀開源代碼有實現
PImpl實現
方法一
cook_cuisine.h
#pragma once
#include <unordered_map>
#include <vector>
#include <memory>
// Pointer to impl ementation
class CookImpl;
// 后廚
class Cook {
public:
Cook(int, const std::vector<std::string>&);
~Cook();
std::vector<std::string> getMenu(); /* 獲取菜單 */
uint32_t getChefNum(); /* 獲取廚師數量 */
private:
CookImpl* impl_;
};
typedef std::shared_ptr<Cook> CookPtr; // 美妙的typedef 懶人工具cook_cuisine.cc
#include "cook_cuisine.h"
class CookImpl {
public:
CookImpl(uint32_t checf_num, const std::vector<std::string>& menu):checf_num_(checf_num), menu_(menu) {}
std::vector<std::string> getMenu();
uint32_t getChefNum();
private:
uint32_t checf_num_;
std::vector<std::string> menu_;
};
std::vector<std::string> CookImpl::getMenu() {
return menu_;
}
uint32_t CookImpl::getChefNum() {
return checf_num_;
}
Cook::Cook(int chef_num, const std::vector<std::string>& menu) {
impl_ = new CookImpl(chef_num, menu);
}
Cook::~Cook() {
delete impl_;
}
std::vector<std::string> Cook::getMenu() {
return impl_->getMenu();
}
uint32_t Cook::getChefNum() {
return impl_->getChefNum();
}方法二
cook_cuisine.h
#pragma once
#include <unordered_map>
#include <vector>
#include <memory>
#include "cook_cuisine_imp.h"
// 后廚
class Cook {
public:
Cook(int, const std::vector<std::string>&);
~Cook();
std::vector<std::string> getMenu(); /* 獲取菜單 */
uint32_t getChefNum(); /* 獲取廚師數量 */
private:
CookImplPtr impl_;
};
typedef std::shared_ptr<Cook> CookPtr;cook_cuisine.cc
#include "cook_cuisine.h"
Cook::Cook(int chef_num, const std::vector<std::string>& menu) {
impl_.reset(new CookImpl(chef_num, menu));
}
Cook::~Cook() {
}
std::vector<std::string> Cook::getMenu() {
return impl_->getMenu();
}
uint32_t Cook::getChefNum() {
return impl_->getChefNum();
}cook_cuisine_imp.h
#pragma once
#include <vector>
#include <unordered_map>
#include <memory>
class CookImpl {
public:
CookImpl(uint32_t checf_num, const std::vector<std::string>& menu):checf_num_(checf_num), menu_(menu) {}
std::vector<std::string> getMenu();
uint32_t getChefNum();
private:
uint32_t checf_num_;
std::vector<std::string> menu_;
};
typedef std::shared_ptr<CookImpl> CookImplPtr;cook_cusine_imp.cc
#include "cook_cuisine_imp.h"
std::vector<std::string> CookImpl::getMenu() {
return menu_;
}
uint32_t CookImpl::getChefNum() {
return checf_num_;
}main.cc
#include "cook_cuisine.h"
#include <iostream>
using namespace std; // Testing, 平時開發(fā)可千萬別用這句
int main() {
int checf_num = 10;
const std::vector<std::string> menus = { "Chicken", "Beef", "Noodle", "Milk" };
CookPtr cook(new Cook(checf_num, menus));
auto cook_menu = cook->getMenu();
auto cook_checf_num = cook->getChefNum();
cout << "======================Chinese Cook======================\n";
cout << "============Checf: " << cook_checf_num << " people\n";
cout << "==========Menu\n";
for (size_t i = 0; i < cook_menu.size(); i++) {
cout << "============" << i + 1 << " : " << cook_menu[i] << "\n";
}
return 0;
}
CMakeLists.txt
mkdir build
cd build
cmake ..
PImpl 缺點
空間開銷:每個類都需要額外的指針內存指向實現類
時間開銷:每個類間接訪問實現的時候多一個間接指針操作的開銷
閱讀開銷:使用、閱讀和調試上帶來一些不便(不是啥問題)
總結
每種設計方法都有它的優(yōu)點和缺點
PImpl 用一些內存空間和額外類的實現換取耦合性的下降,是可以接受的
但重點在:在性能/內存要求不敏感處,PImpl 技術才更優(yōu)不錯的發(fā)揮舞臺
極端例子:
你不可能在斐波那契的實現中還加個PImpl 機制,多此一舉
到此這篇關于C++ pimpl機制詳細講解的文章就介紹到這了,更多相關C++ pimpl機制內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!

