一起聊聊Java中的自定義異常
在學(xué)習(xí)Java的過(guò)程中,想必大家都一定學(xué)習(xí)過(guò)異常這個(gè)篇章,異常的基本特性和使用這里就不再多講了。想必大家都能夠理解看懂,并正確使用。
但是,光學(xué)會(huì)基本異常處理和使用不夠的,在工作中常會(huì)有自定義業(yè)務(wù)異常的場(chǎng)景,根據(jù)不同的業(yè)務(wù)異常做對(duì)應(yīng)異常處理,出現(xiàn)異常并不可怕,有時(shí)候是需要使用異常來(lái)驅(qū)動(dòng)業(yè)務(wù)的處理,例如: 在使用唯一約束的數(shù)據(jù)庫(kù)的時(shí)候,如果插入一條重復(fù)的數(shù)據(jù),那么可以通過(guò)捕獲唯一約束異常DuplicateKeyException,如果出現(xiàn)CommunicationsException是不是又要去處理呢?如果兩種情況都使用同樣業(yè)務(wù)邏輯來(lái)處理,是不是同樣捕獲呢?這個(gè)時(shí)候,其實(shí)如果在DAO層統(tǒng)一捕獲Exception,然后向上拋出自定義異常,在調(diào)用成層根據(jù)對(duì)應(yīng)的業(yè)務(wù)異常再進(jìn)行處理,而且自定義異常能做很多輕量化處理(請(qǐng)看下文解釋),是不是方便很多呢?所以這里自定義業(yè)務(wù)異常:既是對(duì)業(yè)務(wù)不同異常場(chǎng)景下的區(qū)分,又是通過(guò)異常來(lái)驅(qū)動(dòng)業(yè)務(wù)流程的處理,以自定義異常好處很多。
Java中的異常
Java中默認(rèn)的異常信息有哪些呢?Java程序中捕獲異常之后會(huì)將異常進(jìn)行輸出,不知道細(xì)心的同學(xué)有沒(méi)有注意到一點(diǎn),輸出的異常是什么東西呢?下面來(lái)看一個(gè)常見(jiàn)的ArithmeticException異常:
java.lang.ArithmeticException: / by zero
at greenhouse.ExceptionTest.testException(ExceptionTest.java:16)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:44)
at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:15)
at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:41)
at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:20)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:76)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:193)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:52)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:191)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:42)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:184)
at org.junit.runners.ParentRunner.run(ParentRunner.java:236)
at org.junit.runner.JUnitCore.run(JUnitCore.java:157)
at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68)
at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47)
at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242)
at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70)
再看看一個(gè)Java程序員耳熟能詳?shù)腘ullPointerException空指針異常:
java.lang.NullPointerException
at greenhouse.ExceptionTest.testException(ExceptionTest.java:16)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:44)
at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:15)
at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:41)
at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:20)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:76)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:50)
at org.junit.runners.ParentRunner$3.run(ParentRunner.java:193)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:52)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:191)
at org.junit.runners.ParentRunner.access$000(ParentRunner.java:42)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:184)
at org.junit.runners.ParentRunner.run(ParentRunner.java:236)
at org.junit.runner.JUnitCore.run(JUnitCore.java:157)
at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68)
at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47)
at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242)
at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70)
大家有沒(méi)有發(fā)現(xiàn)一個(gè)特點(diǎn),就是異常的輸出中能夠精確的輸出異常出現(xiàn)的地點(diǎn),精確到每一行代碼,還有后面一大堆的執(zhí)行過(guò)程類(lèi)調(diào)用,也都打印出來(lái)了,這些信息從哪兒來(lái)呢?
這些信息是從棧中獲取的,在打印異常日志的時(shí)候,會(huì)從JVM 棧中去獲取這些調(diào)用信息。能夠精確的定位異常出現(xiàn)的異常當(dāng)然是好,但是我們有時(shí)候考慮到程序的性能,以及一些需求時(shí),我們有時(shí)候并不需要完全的打印這些信息,并且去方法調(diào)用棧中獲取相應(yīng)的信息,是有性能消耗的,對(duì)于一些性能要求高的程序,我們完全可以在異常處理方面為程序性能做一個(gè)性能提升。
自定義Java異常類(lèi)
所以如何避免輸出這些堆棧信息呢? 那么自定義異常就可以解決這個(gè)問(wèn)題:
首先,自定義異常需要繼承RuntimeException,然后,再通過(guò)是重寫(xiě)fillInStackTrace,toString 方法,例如下面我定義一個(gè)AppException異常:
package com.green.monitor.common.exception;
import java.text.MessageFormat;
/**
* 自定義異常類(lèi)
*/
public class AppException extends RuntimeException {
private boolean isSuccess = false;
private String key;
private String info;
public AppException(String key) {
super(key);
this.key = key;
this.info = key;
}
public AppException(String key, String message) {
super(MessageFormat.format("{0}[{1}]", key, message));
this.key = key;
this.info = message;
}
public AppException(String message, String key, String info) {
super(message);
this.key = key;
this.info = info;
}
public boolean isSuccess() {
return isSuccess;
}
public String getKey() {
return key;
}
public void setKey(String key) {
this.key = key;
}
public String getInfo() {
return info;
}
public void setInfo(String info) {
this.info = info;
}
@Override
public Throwable fillInStackTrace() {
return this;
}
@Override
public String toString() {
return MessageFormat.format("{0}[{1}]",this.key,this.info);
}
}
Java異常源碼
那么為什么要重寫(xiě)fillInStackTrace,和 toString 方法呢? 我們首先來(lái)看源碼是怎么一回事。
public class RuntimeException extends Exception {
static final long serialVersionUID = -7034897190745766939L;
/** Constructs a new runtime exception with <code>null</code> as its
* detail message. The cause is not initialized, and may subsequently be
* initialized by a call to {@link #initCause}.
*/
public RuntimeException() {
super();
}
/** Constructs a new runtime exception with the specified detail message.
* The cause is not initialized, and may subsequently be initialized by a
* call to {@link #initCause}.
*
* @param message the detail message. The detail message is saved for
* later retrieval by the {@link #getMessage()} method.
*/
public RuntimeException(String message) {
super(message);
}
/**
* Constructs a new runtime exception with the specified detail message and
* cause. <p>Note that the detail message associated with
* <code>cause</code> is <i>not</i> automatically incorporated in
* this runtime exception's detail message.
*
* @param message the detail message (which is saved for later retrieval
* by the {@link #getMessage()} method).
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A <tt>null</tt> value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public RuntimeException(String message, Throwable cause) {
super(message, cause);
}
/** Constructs a new runtime exception with the specified cause and a
* detail message of <tt>(cause==null ? null : cause.toString())</tt>
* (which typically contains the class and detail message of
* <tt>cause</tt>). This constructor is useful for runtime exceptions
* that are little more than wrappers for other throwables.
*
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A <tt>null</tt> value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public RuntimeException(Throwable cause) {
super(cause);
}
}
RuntimeException是繼承Exception,但是它里面只是調(diào)用了父類(lèi)的方法,本身是沒(méi)有做什么其余的操作。那么繼續(xù)看Exception里面是怎么回事。
public class Exception extends Throwable {
static final long serialVersionUID = -3387516993124229948L;
/**
* Constructs a new exception with <code>null</code> as its detail message.
* The cause is not initialized, and may subsequently be initialized by a
* call to {@link #initCause}.
*/
public Exception() {
super();
}
/**
* Constructs a new exception with the specified detail message. The
* cause is not initialized, and may subsequently be initialized by
* a call to {@link #initCause}.
*
* @param message the detail message. The detail message is saved for
* later retrieval by the {@link #getMessage()} method.
*/
public Exception(String message) {
super(message);
}
/**
* Constructs a new exception with the specified detail message and
* cause. <p>Note that the detail message associated with
* <code>cause</code> is <i>not</i> automatically incorporated in
* this exception's detail message.
*
* @param message the detail message (which is saved for later retrieval
* by the {@link #getMessage()} method).
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A <tt>null</tt> value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public Exception(String message, Throwable cause) {
super(message, cause);
}
/**
* Constructs a new exception with the specified cause and a detail
* message of <tt>(cause==null ? null : cause.toString())</tt> (which
* typically contains the class and detail message of <tt>cause</tt>).
* This constructor is useful for exceptions that are little more than
* wrappers for other throwables (for example, {@link
* java.security.PrivilegedActionException}).
*
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A <tt>null</tt> value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public Exception(Throwable cause) {
super(cause);
}
}
從源碼中可以看到,Exception里面也是直接調(diào)用了父類(lèi)的方法,和RuntimeException一樣,自己其實(shí)并沒(méi)有做什么。那么直接來(lái)看Throwable里面是怎么一回事:
public class Throwable implements Serializable {
public Throwable(String message) {
fillInStackTrace();
detailMessage = message;
}
/**
* Fills in the execution stack trace. This method records within this
* <code>Throwable</code> object information about the current state of
* the stack frames for the current thread.
*
* @return a reference to this <code>Throwable</code> instance.
* @see java.lang.Throwable#printStackTrace()
*/
public synchronized native Throwable fillInStackTrace();
/**
* Provides programmatic access to the stack trace information printed by
* {@link #printStackTrace()}. Returns an array of stack trace elements,
* each representing one stack frame. The zeroth element of the array
* (assuming the array's length is non-zero) represents the top of the
* stack, which is the last method invocation in the sequence. Typically,
* this is the point at which this throwable was created and thrown.
* The last element of the array (assuming the array's length is non-zero)
* represents the bottom of the stack, which is the first method invocation
* in the sequence.
*
* <p>Some virtual machines may, under some circumstances, omit one
* or more stack frames from the stack trace. In the extreme case,
* a virtual machine that has no stack trace information concerning
* this throwable is permitted to return a zero-length array from this
* method. Generally speaking, the array returned by this method will
* contain one element for every frame that would be printed by
* <tt>printStackTrace</tt>.
*
* @return an array of stack trace elements representing the stack trace
* pertaining to this throwable.
* @since 1.4
*/
public StackTraceElement[] getStackTrace() {
return (StackTraceElement[]) getOurStackTrace().clone();
}
private synchronized StackTraceElement[] getOurStackTrace() {
// Initialize stack trace if this is the first call to this method
if (stackTrace == null) {
int depth = getStackTraceDepth();
stackTrace = new StackTraceElement[depth];
for (int i=0; i < depth; i++)
stackTrace[i] = getStackTraceElement(i);
}
return stackTrace;
}
/**
* Returns the number of elements in the stack trace (or 0 if the stack
* trace is unavailable).
*
* package-protection for use by SharedSecrets.
*/
native int getStackTraceDepth();
/**
* Returns the specified element of the stack trace.
*
* package-protection for use by SharedSecrets.
*
* @param index index of the element to return.
* @throws IndexOutOfBoundsException if <tt>index < 0 ||
* index >= getStackTraceDepth() </tt>
*/
native StackTraceElement getStackTraceElement(int index);
/**
* Returns a short description of this throwable.
* The result is the concatenation of:
* <ul>
* <li> the {@linkplain Class#getName() name} of the class of this object
* <li> ": " (a colon and a space)
* <li> the result of invoking this object's {@link #getLocalizedMessage}
* method
* </ul>
* If <tt>getLocalizedMessage</tt> returns <tt>null</tt>, then just
* the class name is returned.
*
* @return a string representation of this throwable.
*/
public String toString() {
String s = getClass().getName();
String message = getLocalizedMessage();
return (message != null) ? (s + ": " + message) : s;
}
從源碼中可以看到,到Throwable就幾乎到頭了,在fillInStackTrace() 方法是一個(gè)native方法,這方法也就是會(huì)調(diào)用底層的C語(yǔ)言,返回一個(gè)Throwable對(duì)象,toString 方法,返回的是throwable的簡(jiǎn)短描述信息,并且在getStackTrace 方法和 getOurStackTrace 中調(diào)用的都是native方法getStackTraceElement,而這個(gè)方法是返回指定的棧元素信息,所以這個(gè)過(guò)程肯定是消耗性能的,那么我們自定義異常中的重寫(xiě)toString方法和fillInStackTrace方法就可以不從棧中去獲取異常信息,直接輸出,這樣對(duì)系統(tǒng)和程序來(lái)說(shuō),相對(duì)就沒(méi)有那么"重",是一個(gè)優(yōu)化性能的非常好的辦法。
按照上面我們舉例的自定義AppException異常,如果出現(xiàn)異常了,這個(gè)AppException異常輸出是什么樣的信息呢?請(qǐng)看下面吧:
@Test
public void testException(){
try {
String str =null;
System.out.println(str.charAt(0));
}catch (Exception e){
throw new AppException("000001","空指針異常");
}
}
執(zhí)行上面單元測(cè)試,在異常異常的時(shí)候,系統(tǒng)將會(huì)打印我們自定義的異常信息:
000001[空指針異常]
Process finished with exit code -1
所以特別簡(jiǎn)潔,優(yōu)化了系統(tǒng)程序性能,讓程序不這么“重”,所以對(duì)于性能要求特別要求的系統(tǒng),趕緊自定義業(yè)務(wù)異常試一試吧!
到此這篇關(guān)于一起聊聊Java中的自定義異常的文章就介紹到這了,更多相關(guān)Java自定義異常內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
MyBatisPlus批量添加的優(yōu)化與報(bào)錯(cuò)解決
MybatisPlus是一個(gè)高效的java持久層框架,它在Mybatis的基礎(chǔ)上增加了一些便捷的功能,提供了更加易用的API,可以大幅度提高開(kāi)發(fā)效率,這篇文章主要給大家介紹了關(guān)于MyBatisPlus批量添加的優(yōu)化與報(bào)錯(cuò)解決的相關(guān)資料,需要的朋友可以參考下2023-05-05
使用maven開(kāi)發(fā)springboot項(xiàng)目時(shí)pom.xml常用配置(推薦)
這篇文章主要介紹了使用maven開(kāi)發(fā)springboot項(xiàng)目時(shí)的pom.xml常用配置,本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-01-01
java RocketMQ快速入門(mén)基礎(chǔ)知識(shí)
這篇文章主要介紹了java RocketMQ快速入門(mén)基礎(chǔ)知識(shí),所以RocketMQ是站在巨人的肩膀上(kafka),又對(duì)其進(jìn)行了優(yōu)化讓其更滿足互聯(lián)網(wǎng)公司的特點(diǎn)。它是純Java開(kāi)發(fā),具有高吞吐量、高可用性、適合大規(guī)模分布式系統(tǒng)應(yīng)用的特點(diǎn)。,需要的朋友可以參考下2019-06-06
Java中HashMap與String字符串互轉(zhuǎn)的問(wèn)題解決
本文介紹了Java中HashMap與String字符串互轉(zhuǎn)的問(wèn)題解決,當(dāng)我們有需求將HashMap轉(zhuǎn)為Json格式的String時(shí),需要使用FastJson/Gson將HashMap轉(zhuǎn)為String,感興趣的可以了解一下2022-03-03
Java實(shí)現(xiàn)數(shù)據(jù)庫(kù)連接池的方法
這篇文章主要介紹了Java實(shí)現(xiàn)數(shù)據(jù)庫(kù)連接池的方法,涉及java數(shù)據(jù)庫(kù)連接池的創(chuàng)建、連接、刷新、關(guān)閉及狀態(tài)獲取的常用技巧,具有一定參考借鑒價(jià)值,需要的朋友可以參考下2015-07-07
淺談Spring中的循環(huán)依賴(lài)問(wèn)題與解決方案
這篇文章主要介紹了淺談Spring中的循環(huán)依賴(lài)問(wèn)題與解決方案,循環(huán)依賴(lài)就是兩個(gè)或則兩個(gè)以上的bean互相持有對(duì)方,最終形成閉環(huán),比如A依賴(lài)于B,B依賴(lài)于C,C又依賴(lài)于A,需要的朋友可以參考下2023-12-12

