R語言在散點(diǎn)圖中添加lm線性回歸公式的問題
1. 簡單的線性回歸
函數(shù)自帶的例子(R 中鍵入?lm
),lm(y ~ x)
回歸y=kx + b
, lm( y ~ x -1 )
省略b,不對(duì)截距進(jìn)行估計(jì)
:
require(graphics) ## Annette Dobson (1990) "An Introduction to Generalized Linear Models". ## Page 9: Plant Weight Data. ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) group <- gl(2, 10, 20, labels = c("Ctl","Trt")) weight <- c(ctl, trt) lm.D9 <- lm(weight ~ group) lm.D90 <- lm(weight ~ group - 1) # omitting intercept anova(lm.D9) summary(lm.D90) opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(lm.D9, las = 1) # Residuals, Fitted, ... par(opar)
使用R中自帶的mtcars數(shù)據(jù),可以得到截距和斜率,也可以得到解釋率R-square:
require(ggplot2) library(dplyr) #加載dplyr包 library(ggpmisc) #加載ggpmisc包 library(ggpubr) require(gridExtra) model=lm(mtcars$wt ~ mtcars$mpg) model ## 輸出: Call: lm(formula = mtcars$wt ~ mtcars$mpg) Coefficients: (Intercept) mtcars$mpg 6.047 -0.141 ``` ```handlebars summary(model) ## 輸出: Call: lm(formula = mtcars$wt ~ mtcars$mpg) Residuals: Min 1Q Median 3Q Max -0.652 -0.349 -0.138 0.319 1.368 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 6.0473 0.3087 19.59 < 2e-16 *** mtcars$mpg -0.1409 0.0147 -9.56 1.3e-10 *** --- Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1 Residual standard error: 0.494 on 30 degrees of freedom Multiple R-squared: 0.753, Adjusted R-squared: 0.745 F-statistic: 91.4 on 1 and 30 DF, p-value: 1.29e-10
提取回歸R-square值:
通過summary提?。? ## 上面的例子 ## mtcars例子 model=lm(mtcars$wt ~ mtcars$mpg) res=summary(model) str(res) ## 提取各個(gè)值: res$r.squared res$coefficients res$adj.r.squared ## df 矯正后的結(jié)果 res$coefficients[1,1] res$coefficients[2,1]
使用默認(rèn)的plot繪制回歸散點(diǎn):
plot(mtcars$mpg, mtcars$wt, pch=20,cex=2) abline(model,col="red",lwd=2)
計(jì)算Confidence interval(95%):
test=mtcars[c("mpg","wt")] head(test) colnames(test)=c("x","y") model = lm(y ~ x, test) test$predicted = predict( object = model, newdata = test) test$CI = predict( object = model, newdata = test, se.fit = TRUE )$se.fit * qt(1 - (1-0.95)/2, nrow(test)) test$predicted = predict( object = model, newdata = test) test$CI_u=test$predicted+test$CI test$CI_l=test$predicted-test$CI plot(mtcars$mpg, mtcars$wt, pch=20,cex=1) ## have replicated x values abline(model,col="red",lwd=2) lines(x=test$x,y=test$CI_u,col="blue") lines(x=test$x,y=test$CI_l,col="blue")
上面的圖藍(lán)線有點(diǎn)奇怪,簡單繪制最初的plot:
plot(mtcars$mpg, mtcars$wt, pch=20,cex=1,type="b") ## have replicated x values
實(shí)際上面的計(jì)算方法沒問題,但是數(shù)據(jù)不合適,因?yàn)閿?shù)據(jù)x含有重復(fù)值,所以要考慮這個(gè)。
2. 使用ggplot2展示
ggplot2例子:
p <- ggplot(df, aes(x=yreal, y=ypred)) + geom_point(color = "grey20",size = 1, alpha = 0.8) #回歸線 #添加回歸曲線 p2 <- p + geom_smooth(formula = y ~ x, color = "red", fill = "blue", method = "lm",se = T, level=0.95) + theme_bw() + stat_poly_eq( aes(label = paste(..eq.label.., ..adj.rr.label.., sep = '~~~')), formula = y ~ x, parse = TRUE,color="blue", size = 5, #公式字體大小 label.x = 0.05, #位置 ,0-1之間的比例 label.y = 0.95) + labs(title="test",x="Real Value (Huang Huaihai 1777)" , y="Predicted Value (Correlation: 0.5029)") p2
ggplot版本的手動(dòng)計(jì)算:
require(ggplot2) library(dplyr) #加載dplyr包 library(ggpmisc) #加載ggpmisc包 library(ggpubr) require(gridExtra) ggplot(data=df, aes(x=yreal, y=ypred)) + geom_smooth(formula = y ~ x, color = "blue", fill = "grey10", method = "lm") + geom_point() + stat_regline_equation(label.x=0.1, label.y=-1.5) + stat_cor(aes(label=..rr.label..), label.x=0.1, label.y=-2) test=df head(test) colnames(test)=c("x","y") model = lm(y ~ x, test) test$predicted = predict( object = model, newdata = test) test$CI = predict( object = model, newdata = test, se.fit = TRUE )$se.fit * qt(1 - (1-0.95)/2, nrow(test)) ggplot(test) + aes(x = x, y = y) + geom_point(size = 1,colour="grey40") + geom_smooth(formula =y ~ x,method = "lm", fullrange = TRUE, color = "black") + geom_line(aes(y = predicted + CI), color = "blue") + # upper geom_line(aes(y = predicted - CI), color = "red") + # lower theme_classic()
參考:
https://stackoverflow.com/questions/23519224/extract-r-square-value-with-r-in-linear-models (提取R2)
https://blog.csdn.net/LeaningR/article/details/118971000 (提取R2等)
https://stackoverflow.com/questions/45742987/how-is-level-used-to-generate-the-confidence-interval-in-geom-smooth (添加lm線)
https://zhuanlan.zhihu.com/p/131604431 (知乎)
到此這篇關(guān)于R語言在散點(diǎn)圖中添加lm線性回歸公式的問題的文章就介紹到這了,更多相關(guān)R語言線性回歸內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
R語言中向量和矩陣簡單運(yùn)算的實(shí)現(xiàn)
這篇文章主要介紹了R語言中向量和矩陣簡單運(yùn)算的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-03-03R語言ggplot2設(shè)置圖例(legend)的操作大全
ggplot2是一個(gè)繪制可視化圖形的R包,汲取了R語言基礎(chǔ)繪圖系統(tǒng)(graphics)和l?attice包的優(yōu)點(diǎn),下面這篇文章主要給大家介紹了關(guān)于R語言ggplot2設(shè)置圖例(legend)的操作大全,需要的朋友可以參考下2022-07-07R語言學(xué)習(xí)初識(shí)Rcpp類型List
這篇文章主要為大家介紹了R語言中Rcpp的類型List的基礎(chǔ)學(xué)習(xí),有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步早日升職加薪2021-11-11R語言ggplot2圖例標(biāo)簽、標(biāo)題、順序修改和刪除操作實(shí)例
R語言中畫圖時(shí)我們常常要設(shè)定標(biāo)題,如果圖片標(biāo)題是固定則很容易操作,下面這篇文章主要給大家介紹了關(guān)于R語言ggplot2圖例標(biāo)簽、標(biāo)題、順序修改和刪除操作的相關(guān)資料,需要的朋友可以參考下2022-07-07使用ggsignif優(yōu)雅添加顯著性標(biāo)記詳解
這篇文章主要為大家介紹了使用ggsignif優(yōu)雅添加顯著性標(biāo)記詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-09-09R語言dplyr包之高效數(shù)據(jù)處理函數(shù)(filter、group_by、mutate、summarise)詳解
這篇文章主要介紹了R語言dplyr包之高效數(shù)據(jù)處理函數(shù)(filter、group_by、mutate、summarise)的相關(guān)知識(shí),本文給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-03-03