PostgreSQL索引失效會發(fā)生什么
前段時(shí)間碰到個(gè)奇怪的索引失效的問題,實(shí)際情況類似下面這樣:
bill=# begin; BEGIN bill=*# create index idx_t1 on t1(id); CREATE INDEX bill=*# explain select * from t1 where id = 1; QUERY PLAN ---------------------------------------------------- Seq Scan on t1 (cost=0.00..25.88 rows=6 width=36) Filter: (id = 1) (2 rows) bill=*# end; COMMIT bill=# explain select * from t1 where id = 1; QUERY PLAN --------------------------------------------------------------------- Bitmap Heap Scan on t1 (cost=1.50..7.01 rows=6 width=36) Recheck Cond: (id = 1) -> Bitmap Index Scan on idx_t1 (cost=0.00..1.50 rows=6 width=0) Index Cond: (id = 1) (4 rows)
很顯然的問題就是,我在事務(wù)中創(chuàng)建了索引,卻沒辦法使用。但是當(dāng)事務(wù)提交了后便可以正常使用了,這是什么情況呢?
這個(gè)其實(shí)和pg_index中indcheckxmin屬性有關(guān),關(guān)于這個(gè)字段的解釋如下:
If true, queries must not use the index until the xmin of this pg_index row is below their TransactionXmin event horizon, because the table may contain broken HOT chains with incompatible rows that they can see
經(jīng)檢查也確實(shí)如此:
bill=*# select indcheckxmin from pg_index where indexrelid = 'idx_t1'::regclass; indcheckxmin -------------- t (1 row)
那么問題來了,什么情況下創(chuàng)建索引時(shí)會將索引的該屬性設(shè)置為true呢?
從前面官方文檔對于該字段的解釋,如果表中包含broken HOT chains 則會為true,那什么是broken HOT chains ?似乎和HOT機(jī)制有關(guān)。那是不是只有存在broken HOT chains 才會設(shè)置為true呢?
這里就不賣關(guān)子了,直接給出結(jié)論,然后我們再去一一驗(yàn)證。
經(jīng)測試發(fā)現(xiàn),以下兩種情況會導(dǎo)致索引的indcheckxmin設(shè)置為true:
- 當(dāng)前事務(wù)中表上存在broken HOT chains,即官方文檔中所說;
- 當(dāng)old_snapshot_threshold被設(shè)置時(shí)。
場景一:broken HOT chains
這種情況,只要在當(dāng)前事務(wù)中表中存在HOT更新的行時(shí)就會存在。那么什么時(shí)候會進(jìn)行HOT更新呢?兩個(gè)前提:
- 新的元組和舊元組必須在同一個(gè)page中;
- 索引字段不能進(jìn)行更新。
既然如此,實(shí)際中常見的兩種情況就是:
- 對表上最后一個(gè)page進(jìn)行更新;
- 表設(shè)置了fillfactor,即每個(gè)page上有預(yù)留的空閑空間。
例子:
表中插入10條數(shù)據(jù),自然只有1個(gè)page:
bill=# insert into t1 select generate_series(1,10),md5(random()::text); INSERT 0 10
進(jìn)行更新:
bill=# update t1 set info = 'bill' where id = 10; UPDATE 1
查看發(fā)現(xiàn)的確是HOT更新:
關(guān)于t_infomask2字段的解釋這里就不再贅述。
接下來我們創(chuàng)建索引:
可以發(fā)現(xiàn)indcheckxmin被設(shè)置為true,在當(dāng)前事務(wù)中索引不可用。
經(jīng)過驗(yàn)證,在index_build階段,判斷到BrokenHotChain,便將indcheckxmin修改為true。
具體的修改代碼如下:
/*此時(shí)indexInfo->ii_BrokenHotChain已被修改為true */ if ((indexInfo->ii_BrokenHotChain || EarlyPruningEnabled(heapRelation)) && !isreindex && !indexInfo->ii_Concurrent) { Oid indexId = RelationGetRelid(indexRelation); Relation pg_index; HeapTuple indexTuple; Form_pg_index indexForm; pg_index = table_open(IndexRelationId, RowExclusiveLock); indexTuple = SearchSysCacheCopy1(INDEXRELID, ObjectIdGetDatum(indexId)); if (!HeapTupleIsValid(indexTuple)) elog(ERROR, "cache lookup failed for index %u", indexId); indexForm = (Form_pg_index) GETSTRUCT(indexTuple); /* If it's a new index, indcheckxmin shouldn't be set ... */ Assert(!indexForm->indcheckxmin); /*將indcheckxmin修改為true */ indexForm->indcheckxmin = true; CatalogTupleUpdate(pg_index, &indexTuple->t_self, indexTuple); heap_freetuple(indexTuple); table_close(pg_index, RowExclusiveLock); }
同樣我們也可以驗(yàn)證得知,的確是因?yàn)閎rokenhotchains導(dǎo)致的indcheckxmin被設(shè)置為true。
場景二:old_snapshot_threshold
先來看例子:
最簡單的場景,完全的一張空表,在事務(wù)中創(chuàng)建索引indcheckxmin就會被設(shè)置為true,果然索引也是不可用。
bill=# drop table t1; DROP TABLE bill=# create table t1(id int,info text); CREATE TABLE bill=# begin; BEGIN bill=*# create index idx_t1 on t1(id); CREATE INDEX bill=*# select indcheckxmin from pg_index where indexrelid = 'idx_t1'::regclass; indcheckxmin -------------- t (1 row) bill=*# explain select * from t1 where id = 1; QUERY PLAN ---------------------------------------------------- Seq Scan on t1 (cost=0.00..25.88 rows=6 width=36) Filter: (id = 1) (2 rows)
那么為什么old_snapshot_threshold會產(chǎn)生這樣的影響呢?
經(jīng)過跟蹤發(fā)現(xiàn),當(dāng)開啟該參數(shù)時(shí),在事務(wù)中創(chuàng)建索引的snapshotdata結(jié)構(gòu)如下:
(SnapshotData) $6 = {
snapshot_type = SNAPSHOT_MVCC
xmin = 856
xmax = 856
xip = 0x00007fd55c804fc0
xcnt = 0
subxip = 0x00007fd55ad5d000
subxcnt = 0
suboverflowed = false
takenDuringRecovery = false
copied = false
curcid = 1
speculativeToken = 0
vistest = NULL
active_count = 0
regd_count = 0
ph_node = {
first_child = NULL
next_sibling = NULL
prev_or_parent = NULL
}
whenTaken = 691752041261069
lsn = 208079736
}
而禁用該參數(shù)呢?
(SnapshotData) $7 = {
snapshot_type = SNAPSHOT_MVCC
xmin = 828
xmax = 828
xip = 0x00007fad31704780
xcnt = 0
subxip = 0x00007fad3155d000
subxcnt = 0
suboverflowed = false
takenDuringRecovery = false
copied = false
curcid = 1
speculativeToken = 0
active_count = 0
regd_count = 0
ph_node = {
first_child = NULL
next_sibling = NULL
prev_or_parent = NULL
}
whenTaken = 0
lsn = 0
}
可以看到,區(qū)別在于不使用該參數(shù)時(shí),創(chuàng)建snapshotdata不會設(shè)置whenTaken和lsn,那么這兩個(gè)參數(shù)是干嘛的呢?
先來看看snapshotdata的結(jié)構(gòu):
typedef struct SnapshotData { SnapshotType snapshot_type; /* type of snapshot */ /* * The remaining fields are used only for MVCC snapshots, and are normally * just zeroes in special snapshots. (But xmin and xmax are used * specially by HeapTupleSatisfiesDirty, and xmin is used specially by * HeapTupleSatisfiesNonVacuumable.) * * An MVCC snapshot can never see the effects of XIDs >= xmax. It can see * the effects of all older XIDs except those listed in the snapshot. xmin * is stored as an optimization to avoid needing to search the XID arrays * for most tuples. */ TransactionId xmin; /* all XID < xmin are visible to me */ TransactionId xmax; /* all XID >= xmax are invisible to me */ /* * For normal MVCC snapshot this contains the all xact IDs that are in * progress, unless the snapshot was taken during recovery in which case * it's empty. For historic MVCC snapshots, the meaning is inverted, i.e. * it contains *committed* transactions between xmin and xmax. * * note: all ids in xip[] satisfy xmin <= xip[i] < xmax */ TransactionId *xip; uint32 xcnt; /* # of xact ids in xip[] */ /* * For non-historic MVCC snapshots, this contains subxact IDs that are in * progress (and other transactions that are in progress if taken during * recovery). For historic snapshot it contains *all* xids assigned to the * replayed transaction, including the toplevel xid. * * note: all ids in subxip[] are >= xmin, but we don't bother filtering * out any that are >= xmax */ TransactionId *subxip; int32 subxcnt; /* # of xact ids in subxip[] */ bool suboverflowed; /* has the subxip array overflowed? */ bool takenDuringRecovery; /* recovery-shaped snapshot? */ bool copied; /* false if it's a static snapshot */ CommandId curcid; /* in my xact, CID < curcid are visible */ /* * An extra return value for HeapTupleSatisfiesDirty, not used in MVCC * snapshots. */ uint32 speculativeToken; /* * For SNAPSHOT_NON_VACUUMABLE (and hopefully more in the future) this is * used to determine whether row could be vacuumed. */ struct GlobalVisState *vistest; /* * Book-keeping information, used by the snapshot manager */ uint32 active_count; /* refcount on ActiveSnapshot stack */ uint32 regd_count; /* refcount on RegisteredSnapshots */ pairingheap_node ph_node; /* link in the RegisteredSnapshots heap */ TimestampTz whenTaken; /* timestamp when snapshot was taken */ XLogRecPtr lsn; /* position in the WAL stream when taken */ /* * The transaction completion count at the time GetSnapshotData() built * this snapshot. Allows to avoid re-computing static snapshots when no * transactions completed since the last GetSnapshotData(). */ uint64 snapXactCompletionCount; } SnapshotData;
如上所示,TimestampTz表示snapshot何時(shí)產(chǎn)生的,為什么啟用old_snapshot_threshold時(shí)會設(shè)置該值呢?
因?yàn)樵撝嫡怯脕砼袛嗫煺帐欠襁^舊的:
/* * Implement slower/larger portions of TestForOldSnapshot * * Smaller/faster portions are put inline, but the entire set of logic is too * big for that. */ void TestForOldSnapshot_impl(Snapshot snapshot, Relation relation) { if (RelationAllowsEarlyPruning(relation) && (snapshot)->whenTaken < GetOldSnapshotThresholdTimestamp()) ereport(ERROR, (errcode(ERRCODE_SNAPSHOT_TOO_OLD), errmsg("snapshot too old"))); }
這樣我們也比較好理解為什么設(shè)置了該參數(shù)時(shí)創(chuàng)建的索引在當(dāng)前事務(wù)中不可用:
因?yàn)槲覀儾辉O(shè)置該參數(shù)時(shí),在事務(wù)中創(chuàng)建索引是可以保證MVCC的一致性,那么索引便是安全可用的。
而使用參數(shù)時(shí),由于TimestampTz被設(shè)置,數(shù)據(jù)庫會對其進(jìn)行判斷該行數(shù)據(jù)是否已經(jīng)過期,如果過期了那便會被清理掉,這樣對于索引來說便是不安全的,沒法保證數(shù)據(jù)的一致性,對于不是hot-safe的索引,自然要將其indcheckxmin設(shè)置為true,防止在事務(wù)中創(chuàng)建索引后數(shù)據(jù)實(shí)際已經(jīng)過期被刪除的情況。
/* * At this moment we are sure that there are no transactions with the * table open for write that don't have this new index in their list of * indexes. We have waited out all the existing transactions and any new * transaction will have the new index in its list, but the index is still * marked as "not-ready-for-inserts". The index is consulted while * deciding HOT-safety though. This arrangement ensures that no new HOT * chains can be created where the new tuple and the old tuple in the * chain have different index keys. * * We now take a new snapshot, and build the index using all tuples that * are visible in this snapshot. We can be sure that any HOT updates to * these tuples will be compatible with the index, since any updates made * by transactions that didn't know about the index are now committed or * rolled back. Thus, each visible tuple is either the end of its * HOT-chain or the extension of the chain is HOT-safe for this index. */
總結(jié)
當(dāng)pg_index的indcheckxmin字段被設(shè)置為true時(shí),直到此pg_index行的xmin低于查詢的TransactionXmin視界之前,查詢都不能使用此索引。
而產(chǎn)生這種現(xiàn)象主要有兩種情況:
1. 表上在當(dāng)前事務(wù)中存在broken HOT chains;
2. old_snapshot_threshold被設(shè)置時(shí)。
到此這篇關(guān)于PostgreSQL索引失效會發(fā)生什么的文章就介紹到這了,更多相關(guān)PostgreSQL索引失效內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
PostgreSQL 禁用全表掃描的實(shí)現(xiàn)
這篇文章主要介紹了PostgreSQL 禁用全表掃描的實(shí)現(xiàn)操作,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-01-01PostgreSQL數(shù)據(jù)庫中DISTINCT關(guān)鍵字的四種用法詳解
PostgreSQL 不但高度兼容 SQL 標(biāo)準(zhǔn),同時(shí)還對很多語法進(jìn)行了擴(kuò)展,可以用于實(shí)現(xiàn)一些特殊的功能,今天我們就來介紹一下 PostgreSQL 數(shù)據(jù)庫中 DISTINCT 關(guān)鍵字的 4 種不同用法,需要的朋友可以參考下2024-04-04postgresql高級應(yīng)用之行轉(zhuǎn)列&匯總求和的實(shí)現(xiàn)思路
這篇文章主要介紹了postgresql高級應(yīng)用之行轉(zhuǎn)列&匯總求和的實(shí)現(xiàn)思路,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-05-05PostgreSQL查詢修改max_connections(最大連接數(shù))及其它配置詳解
postgresql數(shù)據(jù)庫最大連接數(shù)是系統(tǒng)允許的最大連接數(shù),當(dāng)數(shù)據(jù)庫并發(fā)用戶超過該連接數(shù)后,會導(dǎo)致新連接無法建立或者連接超時(shí),這篇文章主要給大家介紹了關(guān)于PostgreSQL查詢修改max_connections(最大連接數(shù))及其它配置的相關(guān)資料,需要的朋友可以參考下2024-01-01PostgreSQL13基于流復(fù)制搭建后備服務(wù)器的方法
這篇文章主要介紹了PostgreSQL13基于流復(fù)制搭建后備服務(wù)器,后備服務(wù)器作為主服務(wù)器的數(shù)據(jù)備份,可以保障數(shù)據(jù)不丟,而且在主服務(wù)器發(fā)生故障后可以提升為主服務(wù)器繼續(xù)提供服務(wù)。需要的朋友可以參考下2022-01-01PostgreSQL流復(fù)制參數(shù)max_wal_senders的用法說明
這篇文章主要介紹了PostgreSQL流復(fù)制參數(shù)max_wal_senders的用法說明,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-12-12postgreSQL中的row_number() 與distinct用法說明
這篇文章主要介紹了postgreSQL中的row_number() 與distinct用法說明,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2021-01-01PostgreSQL創(chuàng)建新用戶所遇見的權(quán)限問題以及解決辦法
這篇文章主要給大家介紹了關(guān)于PostgreSQL創(chuàng)建新用戶所遇見的權(quán)限問題以及解決辦法, 在PostgreSQL中創(chuàng)建一個(gè)新用戶非常簡單,但可能會遇到權(quán)限問題,需要的朋友可以參考下2023-09-09