pytorch從頭開始搭建UNet++的過程詳解
Unet是一個最近比較火的網(wǎng)絡(luò)結(jié)構(gòu)。它的理論已經(jīng)有很多大佬在討論了。本文主要從實際操作的層面,講解pytorch從頭開始搭建UNet++的過程。
Unet++代碼
網(wǎng)絡(luò)架構(gòu)

黑色部分是Backbone,是原先的UNet。
綠色箭頭為上采樣,藍色箭頭為密集跳躍連接。
綠色的模塊為密集連接塊,是經(jīng)過左邊兩個部分拼接操作后組成的
Backbone
2個3x3的卷積,padding=1。
class VGGBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels):
super().__init__()
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
self.bn1 = nn.BatchNorm2d(middle_channels)
self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
return out上采樣
圖中的綠色箭頭,上采樣使用雙線性插值。
雙線性插值就是有兩個變量的插值函數(shù)的線性插值擴展,其核心思想是在兩個方向分別進行一次線性插值

torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None)
參數(shù)說明:
①size:可以用來指定輸出空間的大小,默認(rèn)是None;
②scale_factor:比例因子,比如scale_factor=2意味著將輸入圖像上采樣2倍,默認(rèn)是None;
③mode:用來指定上采樣算法,有’nearest’、 ‘linear’、‘bilinear’、‘bicubic’、‘trilinear’,默認(rèn)是’nearest’。上采樣算法在本文中會有詳細(xì)理論進行講解;
④align_corners:如果True,輸入和輸出張量的角像素對齊,從而保留這些像素的值,默認(rèn)是False。此處True和False的區(qū)別本文中會有詳細(xì)的理論講解;
⑤recompute_scale_factor:如果recompute_scale_factor是True,則必須傳入scale_factor并且scale_factor用于計算輸出大小。計算出的輸出大小將用于推斷插值的新比例。請注意,當(dāng)scale_factor為浮點數(shù)時,由于舍入和精度問題,它可能與重新計算的scale_factor不同。如果recompute_scale_factor是False,那么size或scale_factor將直接用于插值。
class Up(nn.Module):
def __init__(self):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return x
下采樣
圖中的黑色箭頭,采用的是最大池化。
self.pool = nn.MaxPool2d(2, 2)
深度監(jiān)督
所示,該結(jié)構(gòu)下有4個分支,可以分為兩種模式。
精確模式:4個分支取平均值結(jié)果
快速模式:只選擇一個分支,其余被剪枝
if self.deep_supervision:
output1 = self.final1(x0_1)
output2 = self.final2(x0_2)
output3 = self.final3(x0_3)
output4 = self.final4(x0_4)
return [output1, output2, output3, output4]
else:
output = self.final(x0_4)
return output
網(wǎng)絡(luò)架構(gòu)代碼
class NestedUNet(nn.Module):
def __init__(self, num_classes=1, input_channels=1, deep_supervision=False, **kwargs):
super().__init__()
nb_filter = [32, 64, 128, 256, 512]
self.deep_supervision = deep_supervision
self.pool = nn.MaxPool2d(2, 2)
self.up = Up()
self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1])
self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2])
self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3])
self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4])
self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])
self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])
self.conv0_2 = VGGBlock(nb_filter[0]*2+nb_filter[1], nb_filter[0], nb_filter[0])
self.conv1_2 = VGGBlock(nb_filter[1]*2+nb_filter[2], nb_filter[1], nb_filter[1])
self.conv2_2 = VGGBlock(nb_filter[2]*2+nb_filter[3], nb_filter[2], nb_filter[2])
self.conv0_3 = VGGBlock(nb_filter[0]*3+nb_filter[1], nb_filter[0], nb_filter[0])
self.conv1_3 = VGGBlock(nb_filter[1]*3+nb_filter[2], nb_filter[1], nb_filter[1])
self.conv0_4 = VGGBlock(nb_filter[0]*4+nb_filter[1], nb_filter[0], nb_filter[0])
if self.deep_supervision:
self.final1 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
self.final2 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
self.final3 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
self.final4 = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
else:
self.final = nn.Conv2d(nb_filter[0], num_classes, kernel_size=1)
def forward(self, input):
x0_0 = self.conv0_0(input)
x1_0 = self.conv1_0(self.pool(x0_0))
x0_1 = self.conv0_1(self.up(x1_0, x0_0))
x2_0 = self.conv2_0(self.pool(x1_0))
x1_1 = self.conv1_1(self.up(x2_0, x1_0))
x0_2 = self.conv0_2(self.up(x1_1, torch.cat([x0_0, x0_1], 1)))
x3_0 = self.conv3_0(self.pool(x2_0))
x2_1 = self.conv2_1(self.up(x3_0, x2_0))
x1_2 = self.conv1_2(self.up(x2_1, torch.cat([x1_0, x1_1], 1)))
x0_3 = self.conv0_3(self.up(x1_2, torch.cat([x0_0, x0_1, x0_2], 1)))
x4_0 = self.conv4_0(self.pool(x3_0))
x3_1 = self.conv3_1(self.up(x4_0, x3_0))
x2_2 = self.conv2_2(self.up(x3_1, torch.cat([x2_0, x2_1], 1)))
x1_3 = self.conv1_3(self.up(x2_2, torch.cat([x1_0, x1_1, x1_2], 1)))
x0_4 = self.conv0_4(self.up(x1_3, torch.cat([x0_0, x0_1, x0_2, x0_3], 1)))
if self.deep_supervision:
output1 = self.final1(x0_1)
output2 = self.final2(x0_2)
output3 = self.final3(x0_3)
output4 = self.final4(x0_4)
return [output1, output2, output3, output4]
else:
output = self.final(x0_4)
return output到此這篇關(guān)于pytorch從頭開始搭建UNet++的過程詳解的文章就介紹到這了,更多相關(guān)pytorch搭建UNet++內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Websocket直播間聊天室教程 GoEasy快速實現(xiàn)聊天室
這篇文章主要介紹了Websocket直播間聊天室教程 GoEasy快速實現(xiàn)聊天室,本文通過實例代碼給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-05-05
gitlab自動定時備份文件備份失敗發(fā)送郵件功能實現(xiàn)
為預(yù)防gitlab出現(xiàn)故障,每天定時備份,備份完成后把之前的備份文件刪除,備份成功或失敗的時候自動發(fā)送郵件提醒,這里的gitlab為docker部署,對gitlab自動定時備份文件相關(guān)操作感興趣的朋友一起看看吧2024-06-06
有關(guān)將idea的系統(tǒng)配置文件移到其它盤激活失效的問題
這篇文章給大家介紹win7系統(tǒng)盤空間不足,發(fā)現(xiàn)idea2019.3 占3.4G,將idea的系統(tǒng)配置文件移到其它盤,激活失效的解決方法,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友參考下吧2020-11-11
VS2019創(chuàng)建MFC程序的實現(xiàn)方法
這篇文章主要介紹了VS2019創(chuàng)建MFC程序的實現(xiàn)方法,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-08-08

