無constructor的class類還能new嗎問題解析
前言
某一天晚上跟"混子瑤"聊天,下面模擬一下對話情景。
我:混子瑤,今天學(xué)了什么?。?/p>
混子瑤:今天學(xué)習(xí)了TypeScript的class類高級類型?。?然后發(fā)了一張截圖...,圖上有明顯的兩個類 )
class Point { x: number; y: number };
class Point2D ( x: number; y: number };
const p: Point = new Point2D();
我:Point2D都沒有constructor,它能被new嗎?
混子瑤:可以啊,你看它又沒報錯:

我:這么神奇的嘛?
混子瑤: emmmm...
果真是這么神奇的嘛?來試一下不就知道咯!
class語法糖
class是ES6提供的一個語法糖,本質(zhì)是一個函數(shù),它具有constructor,static默認方法... 咦?既然constructor是class類默認的,那豈不是顯示,隱式都會默認去調(diào)用嗎?文章的標(biāo)題不就是一個子虛烏有的嗎? 我們上babel來進行一下語法降級。
class A {
x = 1;
y = 2
}
const a = new A(10,20)
console.log(a); // {x: 1, y: 2}
class B {
constructor(x, y){
this.x = x;
this.y = y;
}
x = 1;
y = 2;
}
const b = new B(30,40)
console.log(b); // {x: 30, y: 40}
// 降級之后的代碼
"use strict";
function _typeof(obj) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (obj) { return typeof obj; } : function (obj) { return obj && "function" == typeof Symbol && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }, _typeof(obj); }
function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey(descriptor.key), descriptor); } }
function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; }
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
function _defineProperty(obj, key, value) { key = _toPropertyKey(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; }
function _toPropertyKey(arg) { var key = _toPrimitive(arg, "string"); return _typeof(key) === "symbol" ? key : String(key); }
function _toPrimitive(input, hint) { if (_typeof(input) !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (_typeof(res) !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); }
var A = /*#__PURE__*/_createClass(function A() {
_classCallCheck(this, A);
_defineProperty(this, "x", 1);
_defineProperty(this, "y", 2);
});
var a = new A(10, 20);
console.log(a); // {x: 1, y: 2}
var B = /*#__PURE__*/_createClass(function B(x, y) {
_classCallCheck(this, B);
_defineProperty(this, "x", 1);
_defineProperty(this, "y", 2);
this.x = x;
this.y = y;
});
var b = new B(30, 40);
console.log(b); // {x: 30, y: 40}
利用babel降級把ES6轉(zhuǎn)化成了ES5代碼,更能證明class只是一個語法糖,本質(zhì)只是一個函數(shù)。那我們來研究一下這些函數(shù)吧!????????
var B = /*#__PURE__*/ _createClass(function B(x, y) {
_classCallCheck(this, B)
_defineProperty(this, 'x', 1)
_defineProperty(this, 'y', 2)
this.x = x // 這里的this為new出來的 B{}
this.y = y // 這里的this為new出來的 B{}
})
var b = new B(30, 40)
console.log(b) // {x: 30, y: 40}
_createClass
function _createClass(Constructor, protoProps, staticProps) {
// 其中Constructor為f B(x,y),創(chuàng)造的一個ES5構(gòu)造函數(shù)
// protoProps :undefined 屬性
// staticProps: undefined 靜態(tài)屬性
if (protoProps) _defineProperties(Constructor.prototype, protoProps)
if (staticProps) _defineProperties(Constructor, staticProps)
Object.defineProperty(Constructor, 'prototype', { writable: false })
return Constructor // 返回f B(x,y)
}
_classCallCheck
function _classCallCheck(instance, Constructor) {
// instance = B{} 由new創(chuàng)造出來
// Constructor = f B(x, y)
if (!(instance instanceof Constructor)) {
throw new TypeError('Cannot call a class as a function')
}
}
_defineProperty
function _defineProperty(obj, key, value) {
// obj = B{}
// key = "x"
// value = 1
key = _toPropertyKey(key) // 取到原始值key
if (key in obj) { // 如果key是實例屬性或者在原型鏈上,就做劫持
Object.defineProperty(obj, key, {
value: value,
enumerable: true,
configurable: true,
writable: true
})
} else { // 不在的話,就添加key
obj[key] = value
}
return obj // 返回實例對象
}
_toPropertyKey
function _toPropertyKey(arg) {
// arg = "x"
var key = _toPrimitive(arg, 'string') // "x"
return _typeof(key) === 'symbol' ? key : String(key)
}
_toPrimitive
function _toPrimitive(input, hint) {
// input = "x"
// hint = "string"
// 如果input是原始值,并且不等于null,則直接返回
if (_typeof(input) !== 'object' || input === null) return input
var prim = input[Symbol.toPrimitive] // 如果是對象,則需要拆箱得到原始值
if (prim !== undefined) { // 如果是不等于undefined,則表示有原始值
var res = prim.call(input, hint || 'default')
if (_typeof(res) !== 'object') return res
throw new TypeError('@@toPrimitive must return a primitive value.')
}
return (hint === 'string' ? String : Number)(input) // 如果是undefined則表示,沒有取到原始值,需要繼續(xù)拆箱調(diào)用Sting("x")取到原始值
}
_typeof
function _typeof(obj) {
// obj = "x"
'@babel/helpers - typeof' // babel提供的解析模塊
return (
(_typeof =
// 驗證是否支持Symbol
'function' == typeof Symbol && 'symbol' == typeof Symbol.iterator
? function (obj) {
return typeof obj // "string"
} // 支持Symbol,則_typeof = fucntion(obj){return typeof obj}
: function (obj) { // 不支持Symbol的話,則會判斷當(dāng)前的單一職責(zé),保證一個實例的情況
return obj &&
'function' == typeof Symbol &&
obj.constructor === Symbol &&
obj !== Symbol.prototype
? 'symbol'
: typeof obj // "string"
}),
_typeof(obj)
)
}
_defineProperties
function _defineProperties(target, props) {
// target = Constructor.prototype
// props = props屬性
for (var i = 0; i < props.length; i++) {
var descriptor = props[i] // 遍歷屬性
descriptor.enumerable = descriptor.enumerable || false // 設(shè)置不可枚舉 靜態(tài)屬性無法被實例化
descriptor.configurable = true // 可擴展
if ('value' in descriptor) descriptor.writable = true // 科協(xié)
Object.defineProperty(target, _toPropertyKey(descriptor.key), descriptor)
}
}
靜態(tài)屬性無法被實例化

關(guān)于class的繼承
我們有如下代碼
// class B
class B {
static q = 1;
m = 3;
constructor(x, y){
this.x = x;
this.y = y;
}
}
// class E
class E extends B {
constructor(x,y){
super(x,y)
this.x = x;
this.y =y
}
m = 10;
n = 20;
}
const e = new E(100,200)
const b = new B(30,40)
console.log(e);
console.log(b);
執(zhí)行結(jié)果:

代碼降級:
"use strict";
function _typeof(obj) { "@babel/helpers - typeof"; return _typeof = "function" == typeof Symbol && "symbol" == typeof Symbol.iterator ? function (obj) { return typeof obj; } : function (obj) { return obj && "function" == typeof Symbol && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }, _typeof(obj); }
function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); Object.defineProperty(subClass, "prototype", { writable: false }); if (superClass) _setPrototypeOf(subClass, superClass); }
function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf ? Object.setPrototypeOf.bind() : function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); }
function _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; }
function _possibleConstructorReturn(self, call) { if (call && (_typeof(call) === "object" || typeof call === "function")) { return call; } else if (call !== void 0) { throw new TypeError("Derived constructors may only return object or undefined"); } return _assertThisInitialized(self); }
function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; }
function _isNativeReflectConstruct() { if (typeof Reflect === "undefined" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === "function") return true; try { Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); return true; } catch (e) { return false; } }
function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf.bind() : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); }
function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, _toPropertyKey(descriptor.key), descriptor); } }
function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; }
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
function _defineProperty(obj, key, value) { key = _toPropertyKey(key); if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; }
function _toPropertyKey(arg) { var key = _toPrimitive(arg, "string"); return _typeof(key) === "symbol" ? key : String(key); }
function _toPrimitive(input, hint) { if (_typeof(input) !== "object" || input === null) return input; var prim = input[Symbol.toPrimitive]; if (prim !== undefined) { var res = prim.call(input, hint || "default"); if (_typeof(res) !== "object") return res; throw new TypeError("@@toPrimitive must return a primitive value."); } return (hint === "string" ? String : Number)(input); }
var B = /*#__PURE__*/_createClass(function B(x, y) {
_classCallCheck(this, B);
_defineProperty(this, "m", 3);
this.x = x;
this.y = y;
});
_defineProperty(B, "q", 1);
var b = new B(30, 40);
console.log(b);
var E = /*#__PURE__*/function (_B) {
_inherits(E, _B); // _B為f B(x,y) E 為f E(x, y)
var _super = _createSuper(E);
function E(x, y) {
var _this;
_classCallCheck(this, E);
_this = _super.call(this, x, y);
_defineProperty(_assertThisInitialized(_this), "m", 10);
_defineProperty(_assertThisInitialized(_this), "n", 20);
_this.x = x;
_this.y = y;
return _this;
}
return _createClass(E);
}(B);
var e = new E(100, 200);
console.log(e);
在這里我們看到了super關(guān)鍵字被_inherits、_createSuper代替,extends關(guān)鍵字也被函數(shù)替代,那么我們來研究一下這個代碼。
_inherits
function _inherits(subClass, superClass) { // subClass為子類的構(gòu)造函數(shù),superClass為父類的構(gòu)造函數(shù)
if (typeof superClass !== 'function' && superClass !== null) {
throw new TypeError('Super expression must either be null or a function')
}
// 創(chuàng)建子類的原型
subClass.prototype = Object.create(superClass && superClass.prototype, {
constructor: { value: subClass, writable: true, configurable: true }
})
Object.defineProperty(subClass, 'prototype', { writable: false })
// 綁定子類原型
if (superClass) _setPrototypeOf(subClass, superClass)
}
_setPrototypeOf
function _setPrototypeOf(o, p) { // o為子類的構(gòu)造函數(shù),p為父類的構(gòu)造函數(shù)
_setPrototypeOf = Object.setPrototypeOf
? Object.setPrototypeOf.bind()
: function _setPrototypeOf(o, p) {
o.__proto__ = p
return o
}
return _setPrototypeOf(o, p) // 綁定原型
}
_createSuper
function _createSuper(Derived) { // Derived = f E(x,y)
// 校驗?zāi)懿荒苡肦eflect
var hasNativeReflectConstruct = _isNativeReflectConstruct()
return function _createSuperInternal() {
var Super = _getPrototypeOf(Derived), // 獲得原型對象
result // 創(chuàng)建實例結(jié)果
if (hasNativeReflectConstruct) { // 如果能用Reflect,則調(diào)用Reflect.construct來創(chuàng)建實例對象
var NewTarget = _getPrototypeOf(this).constructor
result = Reflect.construct(Super, arguments, NewTarget)
} else {
result = Super.apply(this, arguments) // 不能則把父類當(dāng)做普通函數(shù)執(zhí)行,this改變?yōu)樽宇悓嵗龑ο?
}
return _possibleConstructorReturn(this, result)
}
}
_isNativeReflectConstruct
function _isNativeReflectConstruct() {
// 判斷是否可用Reflect, 不可被new,因為沒有construct
if (typeof Reflect === 'undefined' || !Reflect.construct) return false
if (Reflect.construct.sham) return false
if (typeof Proxy === 'function') return true
try {
Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {}))
return true
} catch (e) {
return false
}
}
_getPrototypeOf
// 獲取原型對象
function _getPrototypeOf(o) {
_getPrototypeOf = Object.setPrototypeOf
? Object.getPrototypeOf.bind()
: function _getPrototypeOf(o) {
return o.__proto__ || Object.getPrototypeOf(o)
}
return _getPrototypeOf(o)
}
_possibleConstructorReturn、_assertThisInitialized則是檢驗子類constructor規(guī)則與實例存在與否。 之后便是走_createclass那一套邏輯,所以這就是class繼承相關(guān)的東西,跟ES5中的組合寄生繼承實現(xiàn)的很類似。
總結(jié)
經(jīng)過這么一轉(zhuǎn)換,一閱讀,我們不僅僅知道了class類的一個本身的概念,而且還知道了他的一個實現(xiàn)原理,能夠深入了解他的一個實例化的過程,當(dāng)我們在被問到class類沒有constructor還能被new嗎?
以上就是無constructor的class類還能new嗎問題解析的詳細內(nèi)容,更多關(guān)于無constructor class類new的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Typescript中extends關(guān)鍵字的基本使用
extends表示具體的泛型類型只能是object類型,某個變量如果能斷言成object類型[變量as object],那么這個變量的類型符合T extends object,下面這篇文章主要給大家介紹了關(guān)于Typescript中extends關(guān)鍵字基本使用的相關(guān)資料,需要的朋友可以參考下2022-08-08
JavaScript中while循環(huán)的基礎(chǔ)使用教程
這篇文章主要給大家介紹了關(guān)于JavaScript中while循環(huán)的基礎(chǔ)使用教程,文中通過示例代碼介紹的非常詳細,對大家學(xué)習(xí)或者使用JavaScript具有一定的參考學(xué)習(xí)價值,需要的朋友們下面來一起學(xué)習(xí)學(xué)習(xí)吧2020-08-08
BootstrapValidator驗證用戶名已存在(ajax)
這篇文章主要為大家詳細介紹了BootstrapValidator驗證用戶名已存在,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-11-11
詳解微信小程序?qū)崿F(xiàn)WebSocket心跳重連
這篇文章主要介紹了詳解微信小程序?qū)崿F(xiàn)WebSocket心跳重連,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2018-07-07

