MySQL索引背后的之使用策略及優(yōu)化(高性能索引策略)
示例數(shù)據(jù)庫(kù)
為了討論索引策略,需要一個(gè)數(shù)據(jù)量不算小的數(shù)據(jù)庫(kù)作為示例。本文選用MySQL官方文檔中提供的示例數(shù)據(jù)庫(kù)之一:employees。這個(gè)數(shù)據(jù)庫(kù)關(guān)系復(fù)雜度適中,且數(shù)據(jù)量較大。下圖是這個(gè)數(shù)據(jù)庫(kù)的E-R關(guān)系圖(引用自MySQL官方手冊(cè)):

圖12
MySQL官方文檔中關(guān)于此數(shù)據(jù)庫(kù)的頁(yè)面為http://dev.mysql.com/doc/employee/en/employee.html。里面詳細(xì)介紹了此數(shù)據(jù)庫(kù),并提供了下載地址和導(dǎo)入方法,如果有興趣導(dǎo)入此數(shù)據(jù)庫(kù)到自己的MySQL可以參考文中內(nèi)容。
最左前綴原理與相關(guān)優(yōu)化
高效使用索引的首要條件是知道什么樣的查詢會(huì)使用到索引,這個(gè)問(wèn)題和B+Tree中的“最左前綴原理”有關(guān),下面通過(guò)例子說(shuō)明最左前綴原理。
這里先說(shuō)一下聯(lián)合索引的概念。在上文中,我們都是假設(shè)索引只引用了單個(gè)的列,實(shí)際上,MySQL中的索引可以以一定順序引用多個(gè)列,這種索引叫做聯(lián)合索引,一般的,一個(gè)聯(lián)合索引是一個(gè)有序元組,其中各個(gè)元素均為數(shù)據(jù)表的一列,實(shí)際上要嚴(yán)格定義索引需要用到關(guān)系代數(shù),但是這里我不想討論太多關(guān)系代數(shù)的話題,因?yàn)槟菢訒?huì)顯得很枯燥,所以這里就不再做嚴(yán)格定義。另外,單列索引可以看成聯(lián)合索引元素?cái)?shù)為1的特例。
以employees.titles表為例,下面先查看其上都有哪些索引:
SHOW INDEX FROM employees.titles;
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| titles | 0 | PRIMARY | 1 | emp_no | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 2 | title | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 3 | from_date | A | 443308 | | BTREE |
| titles | 1 | emp_no | 1 | emp_no | A | 443308 | | BTREE |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
從結(jié)果中可以到titles表的主索引為
ALTER TABLE employees.titles DROP INDEX emp_no;
這樣就可以專(zhuān)心分析索引PRIMARY的行為了。
情況一:全列匹配。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer' AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
很明顯,當(dāng)按照索引中所有列進(jìn)行精確匹配(這里精確匹配指“=”或“IN”匹配)時(shí),索引可以被用到。這里有一點(diǎn)需要注意,理論上索引對(duì)順序是敏感的,但 是由于MySQL的查詢優(yōu)化器會(huì)自動(dòng)調(diào)整where子句的條件順序以使用適合的索引,例如我們將where中的條件順序顛倒:
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='10001' AND title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
效果是一樣的。
情況二:最左前綴匹配。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
當(dāng)查詢條件精確匹配索引的左邊連續(xù)一個(gè)或幾個(gè)列時(shí),如
情況三:查詢條件用到了索引中列的精確匹配,但是中間某個(gè)條件未提供。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
此時(shí)索引使用情況和情況二相同,因?yàn)閠itle未提供,所以查詢只用到了索引的第一列,而后面的from_date雖然也在索引中,但是由于 title不存在而無(wú)法和左前綴連接,因此需要對(duì)結(jié)果進(jìn)行掃描過(guò)濾from_date(這里由于emp_no唯一,所以不存在掃描)。如果想讓 from_date也使用索引而不是where過(guò)濾,可以增加一個(gè)輔助索引
首先我們看下title一共有幾種不同的值:
SELECT DISTINCT(title) FROM employees.titles;
+--------------------+
| title |
+--------------------+
| Senior Engineer |
| Staff |
| Engineer |
| Senior Staff |
| Assistant Engineer |
| Technique Leader |
| Manager |
+--------------------+
只有7種。在這種成為“坑”的列值比較少的情況下,可以考慮用“IN”來(lái)填補(bǔ)這個(gè)“坑”從而形成最左前綴:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no='10001'
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 7 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
這次key_len為59,說(shuō)明索引被用全了,但是從type和rows看出IN實(shí)際上執(zhí)行了一個(gè)range查詢,這里檢查了7個(gè)key??聪聝煞N查詢的性能比較:
SHOW PROFILES;
+----------+------------+-------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+-------------------------------------------------------------------------------+
| 10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26'|
| 11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='10001' AND title IN ... |
+----------+------------+-------------------------------------------------------------------------------+
“填坑”后性能提升了一點(diǎn)。如果經(jīng)過(guò)emp_no篩選后余下很多數(shù)據(jù),則后者性能優(yōu)勢(shì)會(huì)更加明顯。當(dāng)然,如果title的值很多,用填坑就不合適了,必須建立輔助索引。
情況四:查詢條件沒(méi)有指定索引第一列。
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
由于不是最左前綴,索引這樣的查詢顯然用不到索引。
情況五:匹配某列的前綴字符串。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title LIKE 'Senior%';
view sourceprint?
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 56 | NULL | 1 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
此時(shí)可以用到索引,但是如果通配符不是只出現(xiàn)在末尾,則無(wú)法使用索引。
情況六:范圍查詢。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no<'10010' and title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
范圍列可以用到索引(必須是最左前綴),但是范圍列后面的列無(wú)法用到索引。同時(shí),索引最多用于一個(gè)范圍列,因此如果查詢條件中有兩個(gè)范圍列則無(wú)法全用到索引。
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no<'10010'
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
可以看到索引對(duì)第二個(gè)范圍索引無(wú)能為力。這里特別要說(shuō)明MySQL一個(gè)有意思的地方,那就是僅用explain可能無(wú)法區(qū)分范圍索引和多值匹配,因?yàn)樵趖ype中這兩者都顯示為range。同時(shí),用了“between”并不意味著就是范圍查詢,例如下面的查詢:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no BETWEEN '10001' AND '10010'
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
看起來(lái)是用了兩個(gè)范圍查詢,但作用于emp_no上的“BETWEEN”實(shí)際上相當(dāng)于“IN”,也就是說(shuō)emp_no實(shí)際是多值精確匹配??梢钥吹竭@個(gè)查詢用到了索引全部三個(gè)列。因此在MySQL中要謹(jǐn)慎地區(qū)分多值匹配和范圍匹配,否則會(huì)對(duì)MySQL的行為產(chǎn)生困惑。
情況七:查詢條件中含有函數(shù)或表達(dá)式。
很不幸,如果查詢條件中含有函數(shù)或表達(dá)式,則MySQL不會(huì)為這列使用索引(雖然某些在數(shù)學(xué)意義上可以使用)。例如:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND left(title, 6)='Senior';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
雖然這個(gè)查詢和情況五中功能相同,但是由于使用了函數(shù)left,則無(wú)法為title列應(yīng)用索引,而情況五中用LIKE則可以。再如:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='10000';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
顯然這個(gè)查詢等價(jià)于查詢emp_no為10001的函數(shù),但是由于查詢條件是一個(gè)表達(dá)式,MySQL無(wú)法為其使用索引??磥?lái)MySQL還沒(méi)有智能到自動(dòng)優(yōu)化常量表達(dá)式的程度,因此在寫(xiě)查詢語(yǔ)句時(shí)盡量避免表達(dá)式出現(xiàn)在查詢中,而是先手工私下代數(shù)運(yùn)算,轉(zhuǎn)換為無(wú)表達(dá)式的查詢語(yǔ)句。
索引選擇性與前綴索引
既然索引可以加快查詢速度,那么是不是只要是查詢語(yǔ)句需要,就建上索引?答案是否定的。因?yàn)樗饕m然加快了查詢速度,但索引也是有代價(jià)的:索引文件本身要消耗存儲(chǔ)空間,同時(shí)索引會(huì)加重插入、刪除和修改記錄時(shí)的負(fù)擔(dān),另外,MySQL在運(yùn)行時(shí)也要消耗資源維護(hù)索引,因此索引并不是越多越好。一般兩種情況下不建議建索引。
第一種情況是表記錄比較少,例如一兩千條甚至只有幾百條記錄的表,沒(méi)必要建索引,讓查詢做全表掃描就好了。至于多少條記錄才算多,這個(gè)個(gè)人有個(gè)人的看法,我個(gè)人的經(jīng)驗(yàn)是以2000作為分界線,記錄數(shù)不超過(guò) 2000可以考慮不建索引,超過(guò)2000條可以酌情考慮索引。
另一種不建議建索引的情況是索引的選擇性較低。所謂索引的選擇性(Selectivity),是指不重復(fù)的索引值(也叫基數(shù),Cardinality)與表記錄數(shù)(#T)的比值:
Index Selectivity = Cardinality / #T
顯然選擇性的取值范圍為(0, 1],選擇性越高的索引價(jià)值越大,這是由B+Tree的性質(zhì)決定的。例如,上文用到的employees.titles表,如果title字段經(jīng)常被單獨(dú)查詢,是否需要建索引,我們看一下它的選擇性:
SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;
+-------------+
| Selectivity |
+-------------+
| 0.0000 |
+-------------+
title的選擇性不足0.0001(精確值為0.00001579),所以實(shí)在沒(méi)有什么必要為其單獨(dú)建索引。
有一種與索引選擇性有關(guān)的索引優(yōu)化策略叫做前綴索引,就是用列的前綴代替整個(gè)列作為索引key,當(dāng)前綴長(zhǎng)度合適時(shí),可以做到既使得前綴索引的選擇性 接近全列索引,同時(shí)因?yàn)樗饕齥ey變短而減少了索引文件的大小和維護(hù)開(kāi)銷(xiāo)。下面以employees.employees表為例介紹前綴索引的選擇和使 用。
從圖12可以看到employees表只有一個(gè)索引
EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | employees | ALL | NULL | NULL | NULL | NULL | 300024 | Using where |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
如果頻繁按名字搜索員工,這樣顯然效率很低,因此我們可以考慮建索引。有兩種選擇,建
SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.0042 |
+-------------+
SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.9313 |
+-------------+
<first_name>顯然選擇性太低,<first_name, last_name>選擇性很好,但是first_name和last_name加起來(lái)長(zhǎng)度為30,有沒(méi)有兼顧長(zhǎng)度和選擇性的辦法?可以考慮用 first_name和last_name的前幾個(gè)字符建立索引,例如<first_name, left(last_name, 3)>,看看其選擇性:
SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.7879 |
+-------------+
選擇性還不錯(cuò),但離0.9313還是有點(diǎn)距離,那么把last_name前綴加到4:
SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.9007 |
+-------------+
這時(shí)選擇性已經(jīng)很理想了,而這個(gè)索引的長(zhǎng)度只有18,比
ALTER TABLE employees.employees
ADD INDEX `first_name_last_name4` (first_name, last_name(4));
此時(shí)再執(zhí)行一遍按名字查詢,比較分析一下與建索引前的結(jié)果:
SHOW PROFILES;
+----------+------------+---------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+---------------------------------------------------------------------------------+
| 87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
| 90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
+----------+------------+---------------------------------------------------------------------------------+
性能的提升是顯著的,查詢速度提高了120多倍。
前綴索引兼顧索引大小和查詢速度,但是其缺點(diǎn)是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即當(dāng)索引本身包含查詢所需全部數(shù)據(jù)時(shí),不再訪問(wèn)數(shù)據(jù)文件本身)。
InnoDB的主鍵選擇與插入優(yōu)化
在使用InnoDB存儲(chǔ)引擎時(shí),如果沒(méi)有特別的需要,請(qǐng)永遠(yuǎn)使用一個(gè)與業(yè)務(wù)無(wú)關(guān)的自增字段作為主鍵。
經(jīng)??吹接刑踊虿┛陀懻撝麈I選擇問(wèn)題,有人建議使用業(yè)務(wù)無(wú)關(guān)的自增主鍵,有人覺(jué)得沒(méi)有必要,完全可以使用如學(xué)號(hào)或身份證號(hào)這種唯一字段作為主鍵。不論支持哪種論點(diǎn),大多數(shù)論據(jù)都是業(yè)務(wù)層面的。如果從數(shù)據(jù)庫(kù)索引優(yōu)化角度看,使用InnoDB引擎而不使用自增主鍵絕對(duì)是一個(gè)糟糕的主意。
上文討論過(guò)InnoDB的索引實(shí)現(xiàn),InnoDB使用聚集索引,數(shù)據(jù)記錄本身被存于主索引(一顆B+Tree)的葉子節(jié)點(diǎn)上。這就要求同一個(gè)葉子節(jié)點(diǎn)內(nèi)(大小為一個(gè)內(nèi)存頁(yè)或磁盤(pán)頁(yè))的各條數(shù)據(jù)記錄按主鍵順序存放,因此每當(dāng)有一條新的記錄插入時(shí),MySQL會(huì)根據(jù)其主鍵將其插入適當(dāng)?shù)墓?jié)點(diǎn)和位置,如果頁(yè)面達(dá)到裝載因子(InnoDB默認(rèn)為15/16),則開(kāi)辟一個(gè)新的頁(yè)(節(jié)點(diǎn))。
如果表使用自增主鍵,那么每次插入新的記錄,記錄就會(huì)順序添加到當(dāng)前索引節(jié)點(diǎn)的后續(xù)位置,當(dāng)一頁(yè)寫(xiě)滿,就會(huì)自動(dòng)開(kāi)辟一個(gè)新的頁(yè)。如下圖所示:

圖13
這樣就會(huì)形成一個(gè)緊湊的索引結(jié)構(gòu),近似順序填滿。由于每次插入時(shí)也不需要移動(dòng)已有數(shù)據(jù),因此效率很高,也不會(huì)增加很多開(kāi)銷(xiāo)在維護(hù)索引上。
如果使用非自增主鍵(如果身份證號(hào)或?qū)W號(hào)等),由于每次插入主鍵的值近似于隨機(jī),因此每次新紀(jì)錄都要被插到現(xiàn)有索引頁(yè)得中間某個(gè)位置:

圖14
此時(shí)MySQL不得不為了將新記錄插到合適位置而移動(dòng)數(shù)據(jù),甚至目標(biāo)頁(yè)面可能已經(jīng)被回寫(xiě)到磁盤(pán)上而從緩存中清掉,此時(shí)又要從磁盤(pán)上讀回來(lái),這增加了很多開(kāi)銷(xiāo),同時(shí)頻繁的移動(dòng)、分頁(yè)操作造成了大量的碎片,得到了不夠緊湊的索引結(jié)構(gòu),后續(xù)不得不通過(guò)OPTIMIZE TABLE來(lái)重建表并優(yōu)化填充頁(yè)面。
因此,只要可以,請(qǐng)盡量在InnoDB上采用自增字段做主鍵。
相關(guān)文章
Mysql數(shù)據(jù)庫(kù)之sql基本語(yǔ)句小結(jié)
這篇文章主要介紹了Mysql數(shù)據(jù)庫(kù)之sql基本語(yǔ)句,結(jié)合實(shí)例形式總結(jié)分析了MySQL數(shù)據(jù)庫(kù)連接、登錄、查看以及數(shù)據(jù)庫(kù)、數(shù)據(jù)表等常見(jiàn)操作技巧,需要的朋友可以參考下2019-11-11MySql數(shù)據(jù)庫(kù)時(shí)間序列間隔查詢方式
這篇文章主要介紹了MySql數(shù)據(jù)庫(kù)時(shí)間序列間隔查詢方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-05-05Mysql錯(cuò)誤Every derived table must have its own alias解決方法
這篇文章主要介紹了Mysql錯(cuò)誤Every derived table must have its own alias解決方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2019-08-08Mysql數(shù)據(jù)庫(kù)百萬(wàn)級(jí)數(shù)據(jù)測(cè)試索引效果
這篇文章主要為大家介紹了Mysql數(shù)據(jù)庫(kù)百萬(wàn)數(shù)據(jù)測(cè)試索引效果,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-06-06mysql5.7.18安裝時(shí)提示無(wú)法找到入口問(wèn)題的解決方法
這篇文章主要為大家詳細(xì)介紹了mysql5.7.18安裝時(shí)出現(xiàn)無(wú)法找到入口問(wèn)題的解決方法,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-04-04