MySQL下的RAND()優(yōu)化案例分析
眾所周知,在MySQL中,如果直接 ORDER BY RAND() 的話,效率非常差,因為會多次執(zhí)行。事實(shí)上,如果等值查詢也是用 RAND() 的話也如此,我們先來看看下面這幾個SQL的不同執(zhí)行計劃和執(zhí)行耗時。
首先,看下建表DDL,這是一個沒有顯式自增主鍵的InnoDB表:
[yejr@imysql]> show create table t_innodb_random\G *************************** 1. row *************************** Table: t_innodb_random Create Table: CREATE TABLE `t_innodb_random` ( `id` int(10) unsigned NOT NULL, `user` varchar(64) NOT NULL DEFAULT '', KEY `idx_id` (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1
往這個表里灌入一些測試數(shù)據(jù),至少10萬以上, id 字段也是亂序的。
[yejr@imysql]> select count(*) from t_innodb_random\G *************************** 1. row *************************** count(*): 393216
1、常量等值檢索:
[yejr@imysql]> explain select id from t_innodb_random where id = 13412\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: ref possible_keys: idx_id key: idx_id key_len: 4 ref: const rows: 1 Extra: Using index
[yejr@imysql]> select id from t_innodb_random where id = 13412; 1 row in set (0.00 sec)
可以看到執(zhí)行計劃很不錯,是常量等值查詢,速度非???。
2、使用RAND()函數(shù)乘以常量,求得隨機(jī)數(shù)后檢索:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index
[yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)\G Empty set (0.26 sec)
可以看到執(zhí)行計劃很糟糕,雖然是只掃描索引,但是做了全索引掃描,效率非常差。因為WHERE條件中包含了RAND(),使得MySQL把它當(dāng)做變量來處理,無法用常量等值的方式查詢,效率很低。
我們把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得隨機(jī)數(shù)后檢索看看什么情況:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 2 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G Empty set (0.27 sec)
可以看到,執(zhí)行計劃依然是全索引掃描,執(zhí)行耗時也基本相當(dāng)。
3、改造成普通子查詢模式 ,這里有兩次子查詢
[yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G Empty set (0.27 sec)
可以看到,執(zhí)行計劃也不好,執(zhí)行耗時較慢。
4、改造成JOIN關(guān)聯(lián)查詢,不過最大值還是用常量表示
[yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: <derived2> type: system possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1 Extra: *************************** 2. row *************************** id: 1 select_type: PRIMARY table: t1 type: ref possible_keys: idx_id key: idx_id key_len: 4 ref: const rows: 1 Extra: Using where; Using index *************************** 3. row *************************** id: 2 select_type: DERIVED table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: No tables used
[yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G Empty set (0.00 sec)
這時候執(zhí)行計劃就非常完美了,和最開始的常量等值查詢是一樣的了,執(zhí)行耗時也非常之快。
這種方法雖然很好,但是有可能查詢不到記錄,改造范圍查找,但結(jié)果LIMIT 1就可以了:
[yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G *************************** 1. row *************************** id: 1301 1 row in set (0.00 sec)
可以看到,雖然執(zhí)行計劃也是全索引掃描,但是因為有了LIMIT 1,只需要找到一條記錄,即可終止掃描,所以效率還是很快的。
小結(jié):
從數(shù)據(jù)庫中隨機(jī)取一條記錄時,可以把RAND()生成隨機(jī)數(shù)放在JOIN子查詢中以提高效率。
5、再來看看用ORDRR BY RAND()方式一次取得多個隨機(jī)值的方式:
[yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using index; Using temporary; Using filesort
[yejr@imysql]> select id from t_innodb_random order by rand() limit 1000; 1000 rows in set (0.41 sec)
全索引掃描,生成排序臨時表,太差太慢了。
6、把隨機(jī)數(shù)放在子查詢里看看:
[yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: t_innodb_random type: index possible_keys: NULL key: idx_id key_len: 4 ref: NULL rows: 393345 Extra: Using where; Using index *************************** 2. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G 1000 rows in set (0.04 sec)
嗯,提速了不少,這個看起來還不賴:)
7、仿照上面的方法,改成JOIN和隨機(jī)數(shù)子查詢關(guān)聯(lián)
[yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G *************************** 1. row *************************** id: 1 select_type: PRIMARY table: <derived2> type: system possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 1 Extra: *************************** 2. row *************************** id: 1 select_type: PRIMARY table: t1 type: range possible_keys: idx_id key: idx_id key_len: 4 ref: NULL rows: 196672 Extra: Using where; Using index *************************** 3. row *************************** id: 2 select_type: DERIVED table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: No tables used *************************** 4. row *************************** id: 3 select_type: SUBQUERY table: NULL type: NULL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: NULL Extra: Select tables optimized away
[yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G 1000 rows in set (0.00 sec)
可以看到,全索引檢索,發(fā)現(xiàn)符合記錄的條件后,直接取得1000行,這個方法是最快的。
綜上,想從MySQL數(shù)據(jù)庫中隨機(jī)取一條或者N條記錄時,最好把RAND()生成隨機(jī)數(shù)放在JOIN子查詢中以提高效率。
上面說了那么多的廢話,最后簡單說下,就是把下面這個SQL:
SELECT id FROM table ORDER BY RAND() LIMIT n;
改造成下面這個:
SELECT id FROM table t1 JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;
如果想要達(dá)到完全隨機(jī),還可以改成下面這種寫法:
SELECT id FROM table t1 JOIN (SELECT round(RAND() * (SELECT MAX(id) FROM table)) AS nid FROM table LIMIT n) t2 ON t1.id = t2.nid;
就可以享受在SQL中直接取得隨機(jī)數(shù)了,不用再在程序中構(gòu)造一串隨機(jī)數(shù)去檢索了。
相關(guān)文章
淺談mysql使用limit分頁優(yōu)化方案的實(shí)現(xiàn)
在mysql中l(wèi)imit可以實(shí)現(xiàn)快速分頁,但是如果數(shù)據(jù)到了幾百萬時我們的limit必須優(yōu)化才能有效的合理的實(shí)現(xiàn)分頁了,否則可能卡死你的服務(wù)器哦。感興趣的可以一起來了解一下如何實(shí)現(xiàn)優(yōu)化2018-12-12Mysql?索引?BTree?與?B+Tree?的區(qū)別(面試)
這篇文章主要介紹了Mysql索引BTree與B+Tree的區(qū)別,文章圍繞主題展開詳細(xì)的內(nèi)容介紹,具有一定的參考價值,需要的小伙伴可以參考一下2022-09-09